Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biochem Cell Biol ; 91(Pt A): 29-36, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28855121

RESUMO

We investigated the properties of tubulin present in the sedimentable fraction ("Sed-tub") of human erythrocytes, and tracked the location and organization of tubulin in various types of cells during the process of hematopoietic/erythroid differentiation. Sed-tub was sensitive to taxol/nocodazole (drugs that modify microtubule assembly/disassembly), but was organized as part of a protein network rather than in typical microtubule form. This network had a non-uniform "connected-ring" structure, with tubulin localized in the connection areas and associated with other proteins. When tubulin was eliminated from Sed-tub fraction, this connected-ring structure disappeared. Spectrin, a major protein component in Sed-tub fraction, formed a complex with tubulin. During hematopoietic differentiation, tubulin shifts from typical microtubule structure (in pro-erythroblasts) to a disorganized structure (in later stages), and is retained in reticulocytes following enucleation. Thus, tubulin is not completely lost when erythrocytes mature; it continues to play a structural role in the Sed-tub fraction.


Assuntos
Eritrócitos/citologia , Eritrócitos/metabolismo , Hematopoese , Tubulina (Proteína)/metabolismo , Adulto , Sedimentação Sanguínea/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Hematopoese/efeitos dos fármacos , Humanos , Masculino , Nocodazol/farmacologia , Paclitaxel/farmacologia , Espectrina/metabolismo , Tubulina (Proteína)/química
2.
Biochim Biophys Acta ; 1830(6): 3593-603, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23518202

RESUMO

BACKGROUND: Glucose induces H(+)-ATPase activation in Saccharomyces cerevisiae. Our previous study showed that (i) S. cerevisiae plasma membrane H(+)-ATPase forms a complex with acetylated tubulin (AcTub), resulting in inhibition of the enzyme activity; (ii) exogenous glucose addition results in the dissociation of the complex and recovery of the enzyme activity. METHODS: We used classic biochemical and molecular biology tools in order to identify the key components in the mechanism that leads to H(+)-ATPase activation after glucose treatment. RESULTS: We demonstrate that glucose-induced dissociation of the complex is due to pH-dependent activation of a protease that hydrolyzes membrane tubulin. Biochemical analysis identified a serine protease with a kDa of 35-40 and an isoelectric point between 8 and 9. Analysis of several knockout yeast strains led to the detection of Lpx1p as the serine protease responsible of tubulin proteolysis. When lpx1Δ cells were treated with glucose, tubulin was not degraded, the AcTub/H(+)-ATPase complex did not undergo dissociation, and H(+)-ATPase activation was significantly delayed. CONCLUSION: Our findings indicate that the mechanism of H(+)-ATPase activation by glucose involves a decrease in the cytosolic pH and consequent activation of a serine protease that hydrolyzes AcTub, accelerating the process of the AcTub/H(+)-ATPase complex dissociation and the activation of the enzyme. GENERAL SIGNIFICANCE: Our data sheds light into the mechanism by which acetylated tubulin dissociates from the yeast H(+)-ATPase, identifying a degradative step that remained unknown. This finding also proposes an indirect way to pharmacologically regulate yeast H(+)-ATPase activity and open the question about mechanistic similarities with other higher eukaryotes.


Assuntos
Adenosina Trifosfatases/metabolismo , Glucose/farmacologia , Proteínas de Membrana/metabolismo , Fosfolipases A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Serina Proteases/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Adenosina Trifosfatases/genética , Membrana Celular/enzimologia , Membrana Celular/genética , Ativação Enzimática/efeitos dos fármacos , Proteínas de Membrana/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfolipases A/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina Proteases/genética , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...