Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-098590

RESUMO

Outbreaks of emerging coronaviruses in the past two decades and the current pandemic of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this viral family as a zoonotic public health threat. To gain a better understanding of coronavirus presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus sequences. In comparison to previous studies, we observed high proportions of positive samples among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the odds of coronavirus RNA detection significantly increased along the supply chain from field rats sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 84/151). Coronaviruses were detected in the majority of wildlife farms (60.7%, 17/28) and in the Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are farmed. We identified six known coronaviruses in bats and rodents, clustered in three Coronaviridae genera, including the Alpha-, Beta-, and Gammacoronaviruses. Our analysis also suggested either mixing of animal excreta in the environment or interspecies transmission of coronaviruses, as both bat and avian coronaviruses were detected in rodent feces in the trade. The mixing of multiple coronaviruses, and their apparent amplification along the wildlife supply chain into restaurants, suggests maximal risk for end consumers and likely underpins the mechanisms of zoonotic spillover to people.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-056218

RESUMO

Coronaviruses can become zoonotic as in the case of COVID-19, and hunting, sale, and consumption of wild animals in Southeast Asia facilitates an increased risk for such incidents. We sampled and tested rodents (851) and other mammals, and found Betacoronavirus RNA in 12 rodents. The sequences belong to two separate genetic clusters, and relate closely to known rodent coronaviruses detected in the region, and distantly to human coronaviruses OC43 and HKU1. Considering close human-wildlife contact with many species in and beyond the region, a better understanding of virus diversity is urgently needed for the mitigation of future risks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...