Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 4179, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914740

RESUMO

This paper introduces a multi-input multiple-output (MIMO) antenna array system that provides improved radiation diversity for multi-standard/multi-mode 5G communications. The introduced MIMO design contains four pairs of miniaturized self-complementary antennas (SCAs) fed by pairs of independently coupled structures which are symmetrically located at the edge corners of the smartphone mainboard with an overall size of 75 × 150 (mm2). Hence, in total, the design incorporates four pairs of horizontally and vertically polarized resonators. The elements have compact profiles and resonate at 3.6 GHz, the main candidate bands of the sub-6 GHz 5G spectrum. In addition, despite the absence of decoupling structures, adjacent elements demonstrate high isolation. To the best of the authors' knowledge, it is the first type of smartphone antenna design using dual-polarized self-complementary antennas that could possess anti-interference and diversity properties. In addition to exhibiting desirable radiation coverage, the presented smartphone antenna also supports dual polarizations on different sides of the printed circuit board (PCB). It also exhibits good isolation, high-gain patterns, improved radiation coverage, low ECC/TARC, and sufficient channel capacity. The introduced antenna design was manufactured on a standard smartphone board and its main characteristics were experimentally measured. Simulations and measurement results are generally in good agreement with each other. Moreover, the presented antenna system delivers low SAR with adequate efficiency when it comes to the appearance of the user. Hence, the design could be adapted to 5G hand-portable devices. As an additional feature, a new ultra-compact phased array millimeter-wave antenna with super-wide bandwidth and end-fire radiation is being introduced for integration into the MIMO antenna systems. As a result, the proposed antenna system design with improved radiation and multi-standard operation is a good candidate for future multi-mode 5G cellular applications.

3.
Micromachines (Basel) ; 12(8)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34442495

RESUMO

In contemporary wireless communication systems, the multiple-input and multiple-output systems are extensively utilized due to their enhanced spectral efficiency and diversity. Densely packed antenna arrays play an important role in such systems to enhance their spatial diversity, array gain, and beam scanning capabilities. In this article, a slotted meta-material decoupling slab (S-MTM-DS) with dual reflexes slotted E-shapes and an inductive stub is proposed. Its function was validated when located between two microstrip patch antenna elements to reduce the inter-element spacing, the mutual coupling, the return losses, and manufacturing costs due to size reduction. A prototype is simply fabricated in a volume of 67.41 × 33.49 × 1.6 mm3 and frequency-span measured from 8.4:11 GHz. At 9.4 GHz frequency, the spaces between the transmitting elements are decreased to 0.57 of the free space wavelength. When the proposed isolation S-MTM-DS is applied, the average isolation among them is measured to be -36 dB, the operational bandwidth is enhanced to be 1.512 GHz, the fractional bandwidth improved to be 16.04%, and the return losses are decreased to be -26.5 dB at 9.4 GHz center frequency. Consequently, the proposed design has the potential to be implemented simply in wireless contemporary communication schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...