Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(11): 1451-1464, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639088

RESUMO

BACKGROUND: Nearly half of adults have hypertension, a major risk factor for cardiovascular disease. Mitochondrial hyperacetylation is linked to hypertension, but the role of acetylation of specific proteins is not clear. We hypothesized that acetylation of mitochondrial CypD (cyclophilin D) at K166 contributes to endothelial dysfunction and hypertension. METHODS: To test this hypothesis, we studied CypD acetylation in patients with essential hypertension, defined a pathogenic role of CypD acetylation in deacetylation mimetic CypD-K166R mutant mice and endothelial-specific GCN5L1 (general control of amino acid synthesis 5 like 1)-deficient mice using an Ang II (angiotensin II) model of hypertension. RESULTS: Arterioles from hypertensive patients had 280% higher CypD acetylation coupled with reduced Sirt3 (sirtuin 3) and increased GCN5L1 levels. GCN5L1 regulates mitochondrial protein acetylation and promotes CypD acetylation, which is counteracted by mitochondrial deacetylase Sirt3. In human aortic endothelial cells, GCN5L1 depletion prevents superoxide overproduction. Deacetylation mimetic CypD-K166R mice were protected from vascular oxidative stress, endothelial dysfunction, and Ang II-induced hypertension. Ang II-induced hypertension increased mitochondrial GCN5L1 and reduced Sirt3 levels resulting in a 250% increase in GCN5L1/Sirt3 ratio promoting CypD acetylation. Treatment with mitochondria-targeted scavenger of cytotoxic isolevuglandins (mito2HOBA) normalized GCN5L1/Sirt3 ratio, reduced CypD acetylation, and attenuated hypertension. The role of mitochondrial acetyltransferase GCN5L1 in the endothelial function was tested in endothelial-specific GCN5L1 knockout mice. Depletion of endothelial GCN5L1 prevented Ang II-induced mitochondrial oxidative stress, reduced the maladaptive switch of vascular metabolism to glycolysis, prevented inactivation of endothelial nitric oxide, preserved endothelial-dependent relaxation, and attenuated hypertension. CONCLUSIONS: These data support the pathogenic role of CypD acetylation in endothelial dysfunction and hypertension. We suggest that targeting cytotoxic mitochondrial isolevuglandins and GCN5L1 reduces CypD acetylation, which may be beneficial in cardiovascular disease.


Assuntos
Endotélio Vascular , Hipertensão , Mitocôndrias , Sirtuína 3 , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilação , Angiotensina II , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/enzimologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas do Tecido Nervoso , Estresse Oxidativo , Sirtuína 3/metabolismo , Sirtuína 3/genética
2.
Circ Res ; 134(10): 1276-1291, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623763

RESUMO

BACKGROUND: Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS: IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS: We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS: These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.


Assuntos
Bortezomib , Linfócitos T CD8-Positivos , Células Dendríticas , Hipertensão , Complexo de Endopeptidases do Proteassoma , Animais , Masculino , Camundongos , Angiotensina II , Bortezomib/farmacologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Fibroblastos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Hipertensão/metabolismo , Hipertensão/imunologia , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia
3.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37383945

RESUMO

Isolevuglandins (isoLGs) are lipid aldehydes that form in the presence of reactive oxygen species (ROS) and drive immune activation. We found that isoLG-adducts are presented within the context of major histocompatibility complexes (MHC-I) by an immunoproteasome dependent mechanism. Pharmacologic inhibition of LMP7, the chymotrypsin subunit of the immunoproteasome, attenuates hypertension and tissue inflammation in the angiotensin II (Ang II) model of hypertension. Genetic loss of function of all immunoproteasome subunits or conditional deletion of LMP7 in dendritic cell (DCs) or endothelial cells (ECs) attenuated hypertension, reduced aortic T cell infiltration, and reduced isoLG-adduct MHC-I interaction. Furthermore, isoLG adducts structurally resemble double-stranded DNA and contribute to the activation of STING in ECs. These studies define a critical role of the immunoproteasome in the processing and presentation of isoLG-adducts. Moreover they define a role of LMP7 as a regulator of T cell activation and tissue infiltration in hypertension.

4.
Mol Metab ; 67: 101651, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481344

RESUMO

OBJECTIVE: Oxidative stress contributes to the development of insulin resistance (IR) and atherosclerosis. Peroxidation of lipids produces reactive dicarbonyls such as Isolevuglandins (IsoLG) and malondialdehyde (MDA) that covalently bind plasma/cellular proteins, phospholipids, and DNA leading to altered function and toxicity. We examined whether scavenging reactive dicarbonyls with 5'-O-pentyl-pyridoxamine (PPM) protects against the development of IR and atherosclerosis in Ldlr-/- mice. METHODS: Male or female Ldlr-/- mice were fed a western diet (WD) for 16 weeks and treated with PPM versus vehicle alone. Plaque extent, dicarbonyl-lysyl adducts, efferocytosis, apoptosis, macrophage inflammation, and necrotic area were measured. Plasma MDA-LDL adducts and the in vivo and in vitro effects of PPM on the ability of HDL to reduce macrophage cholesterol were measured. Blood Ly6Chi monocytes and ex vivo 5-ethynyl-2'-deoxyuridine (EdU) incorporation into bone marrow CD11b+ monocytes and CD34+ hematopoietic stem and progenitor cells (HSPC) were also examined. IR was examined by measuring fasting glucose/insulin levels and tolerance to insulin/glucose challenge. RESULTS: PPM reduced the proximal aortic atherosclerosis by 48% and by 46% in female and male Ldlr-/- mice, respectively. PPM also decreased IR and hepatic fat and inflammation in male Ldlr-/- mice. Importantly, PPM decreased plasma MDA-LDL adducts and prevented the accumulation of plaque MDA- and IsoLG-lysyl adducts in Ldlr-/- mice. In addition, PPM increased the net cholesterol efflux capacity of HDL from Ldlr-/- mice and prevented both the in vitro impairment of HDL net cholesterol efflux capacity and apoAI crosslinking by MPO generated hypochlorous acid. Moreover, PPM decreased features of plaque instability including decreased proinflammatory M1-like macrophages, IL-1ß expression, myeloperoxidase, apoptosis, and necrotic core. In contrast, PPM increased M2-like macrophages, Tregs, fibrous cap thickness, and efferocytosis. Furthermore, PPM reduced inflammatory monocytosis as evidenced by decreased blood Ly6Chi monocytes and proliferation of bone marrow monocytes and HSPC from Ldlr-/- mice. CONCLUSIONS: PPM has pleotropic atheroprotective effects in a murine model of familial hypercholesterolemia, supporting the therapeutic potential of reactive dicarbonyl scavenging in the treatment of IR and atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Resistência à Insulina , Insulinas , Placa Aterosclerótica , Masculino , Feminino , Camundongos , Animais , HDL-Colesterol/uso terapêutico , Piridoxamina , Camundongos Knockout , Aterosclerose/metabolismo , Colesterol/metabolismo , Inflamação/tratamento farmacológico , Insulinas/uso terapêutico , Glucose
5.
Hypertension ; 79(8): 1644-1655, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35686559

RESUMO

BACKGROUND: IsoLGs (isolevuglandins) are electrophilic products of lipid peroxidation formed in the presence of reactive oxygen species. IsoLGs contribute to hypertension by an unknown mechanism. Studies have shown that reactive oxygen species production drives the formation of neutrophil extracellular traps (NETs) and that NETs accumulate within the aorta and kidneys of patients with hypertension. The purpose of this study was to determine the role of isoLGs in neutrophil migration and NET formation (NETosis) in hypertension. METHODS: Mice were treated with Ang II (angiotensin II) and the specific isoLG scavenger 2-hydroxybenzylamine and examined for tissue neutrophil and NET accumulation by single-cell sequencing and flow cytometry. Isolated human neutrophils were studied to determine the role of isoLGs in NETosis and neutrophil chromatin expansion by immunofluorescence and live cell confocal microscopy. RESULTS: Single-cell sequencing performed on sham, Ang II, and Ang II+2-hydroxybenzylamine treated mice revealed neutrophils as a primary target of 2-hydroxybenzylamine. Peripheral neutrophil migration, aortic NET accumulation, and renal NET accumulation is blocked with 2-hydroxybenzylamine treatment. In isolated human neutrophils, isoLGs accumulate during NETosis and scavenging of isoLGs prevents NETosis. IsoLGs drive neutrophil chromatin expansion during NETosis and disrupt nucleosome structure. CONCLUSIONS: These observations identified a critical role of isoLGs in neutrophil migration and NETosis in hypertension and provide a potential therapy for NET-associated diseases including hypertension and associated end organ damage.


Assuntos
Armadilhas Extracelulares , Hipertensão , Animais , Cromatina , Humanos , Lipídeos , Camundongos , Neutrófilos , Espécies Reativas de Oxigênio
6.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608913

RESUMO

We describe a mechanism responsible for systemic lupus erythematosus (SLE). In humans with SLE and in 2 SLE murine models, there was marked enrichment of isolevuglandin-adducted proteins (isoLG adducts) in monocytes and dendritic cells. We found that antibodies formed against isoLG adducts in both SLE-prone mice and humans with SLE. In addition, isoLG ligation of the transcription factor PU.1 at a critical DNA binding site markedly reduced transcription of all C1q subunits. Treatment of SLE-prone mice with the specific isoLG scavenger 2-hydroxybenzylamine (2-HOBA) ameliorated parameters of autoimmunity, including plasma cell expansion, circulating IgG levels, and anti-dsDNA antibody titers. 2-HOBA also lowered blood pressure, attenuated renal injury, and reduced inflammatory gene expression uniquely in C1q-expressing dendritic cells. Thus, isoLG adducts play an essential role in the genesis and maintenance of systemic autoimmunity and hypertension in SLE.


Assuntos
Hipertensão , Lúpus Eritematoso Sistêmico , Animais , Anticorpos Antinucleares , Autoimunidade , Complemento C1q/genética , Lipídeos , Camundongos
7.
J Biol Chem ; 297(3): 101019, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331945

RESUMO

Reduced activity of paraoxonase 1 (PON1), a high-density lipoprotein (HDL)-associated enzyme, has been implicated in the development of atherosclerosis. Post-translational modifications of PON1 may represent important mechanisms leading to reduced PON1 activity. Under atherosclerotic conditions, myeloperoxidase (MPO) is known to associate with HDL. MPO generates the oxidants hypochlorous acid and nitrogen dioxide, which can lead to post-translational modification of PON1, including tyrosine modifications that inhibit PON1 activity. Nitrogen dioxide also drives lipid peroxidation, leading to the formation of reactive lipid dicarbonyls such as malondialdehyde and isolevuglandins, which modify HDL and could inhibit PON1 activity. Because isolevuglandins are more reactive than malondialdehyde, we used in vitro models containing HDL, PON1, and MPO to test the hypothesis that IsoLG formation by MPO and its subsequent modification of HDL contributes to MPO-mediated reductions in PON1 activity. Incubation of MPO with HDL led to modification of HDL proteins, including PON1, by IsoLG. Incubation of HDL with IsoLG reduced PON1 lactonase and antiperoxidation activities. IsoLG modification of recombinant PON1 markedly inhibited its activity, while irreversible IsoLG modification of HDL before adding recombinant PON1 only slightly inhibited the ability of HDL to enhance the catalytic activity of recombinant PON1. Together, these studies support the notion that association of MPO with HDL leads to lower PON1 activity in part via IsoLG-mediated modification of PON1, so that IsoLG modification of PON1 could contribute to increased risk for atherosclerosis, and blocking this modification might prove beneficial to reduce atherosclerosis.


Assuntos
Arildialquilfosfatase/antagonistas & inibidores , Lipídeos/química , Lipoproteínas HDL/metabolismo , Peroxidase/metabolismo , Arildialquilfosfatase/sangue , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Proteínas Recombinantes/sangue , Proteínas Recombinantes/metabolismo
8.
Circulation ; 143(12): 1242-1255, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33463362

RESUMO

BACKGROUND: Despite the well-established association between T-cell-mediated inflammation and nonischemic heart failure, the specific mechanisms triggering T-cell activation during the progression of heart failure and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T-cell receptor (TCR) activation and promote heart failure. METHODS: We used transverse aortic constriction in mice to trigger myocardial oxidative stress and T-cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77GFP reporter mice, which transiently express GFP on TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII-/- mice and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species and IsoLGs in eliciting T-cell immune responses in vivo by treating mice with the antioxidant TEMPOL and the IsoLG scavenger 2-hydroxybenzylamine during transverse aortic constriction, and ex vivo in mechanistic studies of CD4+ T-cell proliferation in response to IsoLG-modified cardiac proteins. RESULTS: We discovered that TCR antigen recognition increases in the left ventricle as cardiac dysfunction progresses and identified a limited repertoire of activated CD4+ T-cell clonotypes in the left ventricle. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction because MhcII-/- mice reconstituted with CD4+ T cells and OTII mice immunized with their cognate antigen were protected from transverse aortic constriction-induced cardiac dysfunction despite the presence of left ventricle-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-hydroxybenzylamine reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in reactive oxygen species-dependent dendritic cell accumulation of IsoLG protein adducts, which induced robust CD4+ T-cell proliferation. CONCLUSIONS: Our study demonstrates an important role of reactive oxygen species-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T-cell activation within the heart.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Cardiopatias/complicações , Lipídeos/efeitos adversos , Animais , Humanos , Lipídeos/farmacologia , Camundongos
9.
Gastroenterology ; 160(4): 1256-1268.e9, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33189701

RESUMO

BACKGROUND & AIMS: Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis. METHODS: The formation of isoLG adducts was analyzed in the gastric tissues of patients infected with Helicobacter pylori from gastritis to precancerous intestinal metaplasia, in human gastric organoids, and in patients with colitis and colitis-associated carcinoma (CAC). The effect on cancer development of a potent scavenger of dicarbonyl electrophiles, 5-ethyl-2-hydroxybenzylamine (EtHOBA), was determined in transgenic FVB/N insulin-gastrin (INS-GAS) mice and Mongolian gerbils as models of H pylori-induced carcinogenesis and in C57BL/6 mice treated with azoxymethane-dextran sulfate sodium as a model of CAC. The effect of EtHOBA on mutations in gastric epithelial cells of H pylori-infected INS-GAS mice was assessed by whole-exome sequencing. RESULTS: We show increased isoLG adducts in gastric epithelial cell nuclei in patients with gastritis and intestinal metaplasia and in human gastric organoids infected with H pylori. EtHOBA inhibited gastric carcinoma in infected INS-GAS mice and gerbils and attenuated isoLG adducts, DNA damage, and somatic mutation frequency. Additionally, isoLG adducts were elevated in tissues from patients with colitis, colitis-associated dysplasia, and CAC as well as in dysplastic tumors of C57BL/6 mice treated with azoxymethane-dextran sulfate sodium. In this model, EtHOBA significantly reduced adduct formation, tumorigenesis, and dysplasia severity. CONCLUSIONS: Dicarbonyl electrophiles represent a link between inflammation and somatic genomic alterations and are thus key targets for cancer chemoprevention.


Assuntos
Transformação Celular Neoplásica/imunologia , Neoplasias Associadas a Colite/imunologia , Lipídeos/imunologia , Lesões Pré-Cancerosas/imunologia , Neoplasias Gástricas/imunologia , Animais , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/prevenção & controle , Modelos Animais de Doenças , Células Epiteliais , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Gastrite/imunologia , Gastrite/microbiologia , Gastrite/patologia , Gerbillinae , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Helicobacter pylori/isolamento & purificação , Humanos , Lipídeos/antagonistas & inibidores , Metaplasia/imunologia , Metaplasia/microbiologia , Metaplasia/patologia , Camundongos , Camundongos Transgênicos , Organoides , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/prevenção & controle
10.
Hypertension ; 76(6): 1980-1991, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33012204

RESUMO

Hypertension remains a major health problem in Western Societies, and blood pressure is poorly controlled in a third of patients despite use of multiple drugs. Mitochondrial dysfunction contributes to hypertension, and mitochondria-targeted agents can potentially improve treatment of hypertension. We have proposed that mitochondrial oxidative stress produces reactive dicarbonyl lipid peroxidation products, isolevuglandins, and that scavenging of mitochondrial isolevuglandins improves vascular function and reduces hypertension. To test this hypothesis, we have studied the accumulation of mitochondrial isolevuglandins-protein adducts in patients with essential hypertension and Ang II (angiotensin II) model of hypertension using mass spectrometry and Western blot analysis. The therapeutic potential of targeting mitochondrial isolevuglandins was tested by the novel mitochondria-targeted isolevuglandin scavenger, mito2HOBA. Mitochondrial isolevuglandins in arterioles from hypertensive patients were 250% greater than in arterioles from normotensive subjects, and ex vivo mito2HOBA treatment of arterioles from hypertensive subjects increased deacetylation of a key mitochondrial antioxidant, SOD2 (superoxide dismutase 2). In human aortic endothelial cells stimulated with Ang II plus TNF (tumor necrosis factor)-α, mito2HOBA reduced mitochondrial superoxide and cardiolipin oxidation, a specific marker of mitochondrial oxidative stress. In Ang II-infused mice, mito2HOBA diminished mitochondrial isolevuglandins-protein adducts, raised Sirt3 (sirtuin 3) mitochondrial deacetylase activity, reduced vascular superoxide, increased endothelial nitric oxide, improved endothelium-dependent relaxation, and attenuated hypertension. Mito2HOBA preserved mitochondrial respiration, protected ATP production, and reduced mitochondrial permeability pore opening in Ang II-infused mice. These data support the role of mitochondrial isolevuglandins in endothelial dysfunction and hypertension. We conclude that scavenging of mitochondrial isolevuglandins may have therapeutic potential in treatment of vascular dysfunction and hypertension.


Assuntos
Arteríolas/fisiopatologia , Pressão Sanguínea/fisiologia , Hipertensão Essencial/fisiopatologia , Lipídeos/análise , Mitocôndrias/metabolismo , Estresse Oxidativo , Angiotensina II , Animais , Antioxidantes/metabolismo , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Hipertensão Essencial/induzido quimicamente , Hipertensão Essencial/metabolismo , Feminino , Sequestradores de Radicais Livres/farmacologia , Humanos , Lipídeos/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo
11.
Nat Commun ; 11(1): 4084, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796843

RESUMO

Lipid peroxidation generates reactive dicarbonyls including isolevuglandins (IsoLGs) and malondialdehyde (MDA) that covalently modify proteins. Humans with familial hypercholesterolemia (FH) have increased lipoprotein dicarbonyl adducts and dysfunctional HDL. We investigate the impact of the dicarbonyl scavenger, 2-hydroxybenzylamine (2-HOBA) on HDL function and atherosclerosis in Ldlr-/- mice, a model of FH. Compared to hypercholesterolemic Ldlr-/- mice treated with vehicle or 4-HOBA, a nonreactive analogue, 2-HOBA decreases atherosclerosis by 60% in en face aortas, without changing plasma cholesterol. Ldlr-/- mice treated with 2-HOBA have reduced MDA-LDL and MDA-HDL levels, and their HDL display increased capacity to reduce macrophage cholesterol. Importantly, 2-HOBA reduces the MDA- and IsoLG-lysyl content in atherosclerotic aortas versus 4-HOBA. Furthermore, 2-HOBA reduces inflammation and plaque apoptotic cells and promotes efferocytosis and features of stable plaques. Dicarbonyl scavenging with 2-HOBA has multiple atheroprotective effects in a murine FH model, supporting its potential as a therapeutic approach for atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose/metabolismo , Benzilaminas/metabolismo , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Hiperlipoproteinemia Tipo II/metabolismo , Receptores de LDL/genética , Animais , Aorta , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Colesterol/sangue , Colesterol/metabolismo , Feminino , Humanos , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/patologia , Inflamação/tratamento farmacológico , Peroxidação de Lipídeos , Lipoproteínas HDL/metabolismo , Lipoproteínas IDL/sangue , Lipoproteínas IDL/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos
12.
JACC Basic Transl Sci ; 5(6): 602-615, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613146

RESUMO

Oxidative damage is implicated in atrial fibrillation (AF), but antioxidants are ineffective therapeutically. The authors tested the hypothesis that highly reactive lipid dicarbonyl metabolites, or isolevuglandins (IsoLGs), are principal drivers of AF during hypertension. In a hypertensive murine model and stretched atriomyocytes, the dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) prevented IsoLG adducts and preamyloid oligomers (PAOs), and AF susceptibility, whereas the ineffective analog 4-hydroxybenzylamine (4-HOBA) had minimal effect. Natriuretic peptides generated cytotoxic oligomers, a process accelerated by IsoLGs, contributing to atrial PAO formation. These findings support the concept of pre-emptively scavenging reactive downstream oxidative stress mediators as a potential therapeutic approach to prevent AF.

13.
BMC Pharmacol Toxicol ; 21(1): 3, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907026

RESUMO

BACKGROUND: 2-Hydroxybenzylamine (2-HOBA) is a selective dicarbonyl electrophile scavenger being developed as a nutritional supplement to help protect against the development of conditions associated with dicarbonyl electrophile formation, such as the cognitive decline observed with Mild Cognitive Impairment or Alzheimer's disease. METHODS: This study evaluated the safety, tolerability, and pharmacokinetics of repeated oral doses of 2-HOBA acetate (500 or 750 mg) administered to healthy volunteers every eight hours for two weeks. The effects of 2-HOBA on cyclooxygenase function and cerebrospinal fluid penetrance of 2-HOBA were also investigated. RESULTS: Repeated oral administration of 2-HOBA was found to be safe and well-tolerated up to 750 mg TID for 15 days. 2-HOBA was absorbed within 2 h of administration, had a half-life of 2.10-3.27 h, and an accumulation ratio of 1.38-1.52. 2-HOBA did not interfere with cyclooxygenase function and was found to be present in cerebrospinal fluid 90 min after dosing. CONCLUSIONS: Repeated oral administration of 2-HOBA was found to be safe and well-tolerated. These results support continued development of 2-HOBA as a nutritional supplement. TRIAL REGISTRATION: Studies are registered at ClinicalTrials.gov (NCT03555682 Registered 13 June 2018, NCT03554096 Registered 12 June 18).


Assuntos
Benzilaminas/farmacocinética , Suplementos Nutricionais , Administração Oral , Adulto , Benzilaminas/efeitos adversos , Benzilaminas/sangue , Benzilaminas/líquido cefalorraquidiano , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Pharmacol Ther ; 205: 107418, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629006

RESUMO

Products of lipid peroxidation include a number of reactive lipid aldehydes such as malondialdehyde, 4-hydroxy-nonenal, 4-oxo-nonenal, and isolevuglandins (IsoLGs). Although these all contribute to disease processes, the most reactive are the IsoLGs, which rapidly adduct to lysine and other cellular primary amines, leading to changes in protein function, cross-linking and immunogenicity. Their rapid reactivity means that only IsoLG adducts, and not the unreacted aldehyde, can be readily measured. This high reactivity also makes it challenging for standard cellular defense mechanisms such as aldehyde reductases and oxidases to dispose of them before they react with proteins and other cellular amines. This led us to seek small molecule primary amines that might trap and inactivate IsoLGs before they could modify cellular proteins or other endogenous cellular amines such as phosphatidylethanolamines to cause disease. Our studies identified 2-aminomethylphenols including 2-hydroxybenzylamine as IsoLG scavengers. Subsequent studies showed that they also trap other lipid dicarbonyls that react with primary amines such as 4-oxo-nonenal and malondialdehyde, but not hydroxyalkenals like 4-hydroxy-nonenal that preferentially react with soft nucleophiles. This review describes the use of these 2-aminomethylphenols as dicarbonyl scavengers to assess the contribution of IsoLGs and other amine-reactive lipid dicarbonyls to disease and as therapeutic agents.


Assuntos
Benzilaminas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/química , Aldeídos/metabolismo , Aminas/metabolismo , Animais , Desenvolvimento de Medicamentos , Humanos , Proteínas/metabolismo
15.
J Biol Chem ; 294(50): 19022-19033, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31666337

RESUMO

The lipid aldehyde 4-oxo-2-nonenal (ONE) is a highly reactive protein crosslinker derived from peroxidation of n-6 polyunsaturated fatty acids and generated together with 4-hydroxynonenal (HNE). Lipid peroxidation product-mediated crosslinking of proteins in high-density lipoprotein (HDL) causes HDL dysfunction and contributes to atherogenesis. Although HNE is relatively well-studied, the role of ONE in atherosclerosis and in modifying HDL is unknown. Here, we found that individuals with familial hypercholesterolemia (FH) had significantly higher ONE-ketoamide (lysine) adducts in HDL (54.6 ± 33.8 pmol/mg) than healthy controls (15.3 ± 5.6 pmol/mg). ONE crosslinked apolipoprotein A-I (apoA-I) on HDL at a concentration of > 3 mol ONE per 10 mol apoA-I (0.3 eq), which was 100-fold lower than HNE, but comparable to the potent protein crosslinker isolevuglandin. ONE-modified HDL partially inhibited HDL's ability to protect against lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) gene expression in murine macrophages. At 3 eq, ONE dramatically decreased apoA-I exchange from HDL, from ∼46.5 to ∼18.4% (p < 0.001). Surprisingly, ONE modification of HDL or apoA-I did not alter macrophage cholesterol efflux capacity. LC-MS/MS analysis revealed that Lys-12, Lys-23, Lys-96, and Lys-226 in apoA-I are modified by ONE ketoamide adducts. Compared with other dicarbonyl scavengers, pentylpyridoxamine (PPM) most efficaciously blocked ONE-induced protein crosslinking in HDL and also prevented HDL dysfunction in an in vitro model of inflammation. Our findings show that ONE-HDL adducts cause HDL dysfunction and are elevated in individuals with FH who have severe hypercholesterolemia.


Assuntos
Aldeídos/metabolismo , Hiperlipoproteinemia Tipo II/metabolismo , Lipoproteínas HDL/metabolismo , Lisina/metabolismo , Aldeídos/análise , Animais , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Células Cultivadas , Feminino , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575763

RESUMO

Staphylococcus aureus infects every niche of the human host. In response to microbial infection, vertebrates have an arsenal of antimicrobial compounds that inhibit bacterial growth or kill bacterial cells. One class of antimicrobial compounds consists of polyunsaturated fatty acids, which are highly abundant in eukaryotes and encountered by S. aureus at the host-pathogen interface. Arachidonic acid (AA) is one of the most abundant polyunsaturated fatty acids in vertebrates and is released in large amounts during the oxidative burst. Most of the released AA is converted to bioactive signaling molecules, but, independently of its role in inflammatory signaling, AA is toxic to S. aureus Here, we report that AA kills S. aureus through a lipid peroxidation mechanism whereby AA is oxidized to reactive electrophiles that modify S. aureus macromolecules, eliciting toxicity. This process is rescued by cotreatment with antioxidants as well as in a S. aureus strain genetically inactivated for lcpA (USA300 ΔlcpA mutant) that produces lower levels of reactive oxygen species. However, resistance to AA stress in the USA300 ΔlcpA mutant comes at a cost, making the mutant more susceptible to ß-lactam antibiotics and attenuated for pathogenesis in a murine infection model compared to the parental methicillin-resistant S. aureus (MRSA) strain, indicating that resistance to AA toxicity increases susceptibility to other stressors encountered during infection. This report defines the mechanism by which AA is toxic to S. aureus and identifies lipid peroxidation as a pathway that can be modulated for the development of future therapeutics to treat S. aureus infections.IMPORTANCE Despite the ability of the human immune system to generate a plethora of molecules to control Staphylococcus aureus infections, S. aureus is among the pathogens with the greatest impact on human health. One class of host molecules toxic to S. aureus consists of polyunsaturated fatty acids. Here, we investigated the antibacterial properties of arachidonic acid, one of the most abundant polyunsaturated fatty acids in humans, and discovered that the mechanism of toxicity against S. aureus proceeds through lipid peroxidation. A better understanding of the molecular mechanisms by which the immune system kills S. aureus, and by which S. aureus avoids host killing, will enable the optimal design of therapeutics that complement the ability of the vertebrate immune response to eliminate S. aureus infections.


Assuntos
Antibacterianos/farmacologia , Ácido Araquidônico/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Encéfalo/microbiologia , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Feminino , Rim/microbiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mutação , Neutrófilos/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Baço/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Ácidos Teicoicos
17.
Redox Biol ; 26: 101300, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31437812

RESUMO

Inflammation is a major cause of morbidity and mortality in Western societies. Despite use of multiple drugs, both chronic and acute inflammation still represent major health burdens. Inflammation produces highly reactive dicarbonyl lipid peroxidation products such as isolevuglandins which covalently modify and cross-link proteins via lysine residues. Mitochondrial dysfunction has been associated with inflammation; however, its molecular mechanisms and pathophysiological role are still obscure. We hypothesized that inflammation-induced isolevuglandins contribute to mitochondrial dysfunction and mortality. To test this hypothesis, we have (a) investigated the mitochondrial dysfunction in response to synthetic 15-E2-isolevuglandin (IsoLG) and its adducts; (b) developed a new mitochondria-targeted scavenger of isolevuglandins by conjugating 2-hydroxybenzylamine to the lipophilic cation triphenylphosphonium, (4-(4-aminomethyl)-3-hydroxyphenoxy)butyl)-triphenylphosphonium (mito2HOBA); (c) tested if mito2HOBA protects from mitochondrial dysfunction and mortality using a lipopolysaccharide model of inflammation. Acute exposure to either IsoLG or IsoLG adducts with lysine, ethanolamine or phosphatidylethanolamine inhibits mitochondrial respiration and attenuates Complex I activity. Complex II function was much more resistant to IsoLG. We confirmed that mito2HOBA markedly accumulates in isolated mitochondria and it is highly reactive with IsoLGs. To test the role of mitochondrial IsoLGs, we studied the therapeutic potential of mito2HOBA in lipopolysaccharide mouse model of sepsis. Mito2HOBA supplementation in drinking water (0.1 g/L) to lipopolysaccharide treated mice increased survival by 3-fold, improved complex I-mediated respiration, and histopathological analyses supported mito2HOBA-mediated protection of renal cortex from cell injury. These data support the role of mitochondrial IsoLG in mitochondrial dysfunction and inflammation. We conclude that reducing mitochondrial IsoLGs may be a promising therapeutic target in inflammation and conditions associated with mitochondrial oxidative stress and dysfunction.


Assuntos
Inflamação/metabolismo , Lipídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inflamação/etiologia , Rim/metabolismo , Peroxidação de Lipídeos , Lipídeos/química , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Camundongos , Estresse Oxidativo , Sepse/etiologia , Sepse/metabolismo , Sepse/mortalidade
18.
Free Radic Biol Med ; 141: 291-298, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254620

RESUMO

Increased levels of reactive isolevuglandins (IsoLGs) are associated with vascular inflammation and hypertension, two important factors affect heart failure (HF) development. The role of IsoLGs in HF development is unknown. Here we studied the role of IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) in transverse aortic constriction (TAC) induced heart failure. We observed that TAC caused a significant increase of IsoLG protein adducts in cardiac and lung tissues in mice. Both IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) and its less reactive isomer 4-hydroxybenzylamine (4-HOBA) significantly attenuated the left ventricular (LV) and lung IsoLGs in mice after TAC. 2-HOBA and 4-HOBA attenuated TAC-induced LV hypertrophy, heart failure, and the increase of lung weight in mice, and also improved TAC-induced LV dysfunction. Moreover, both 2-HOBA and 4-HOBA effectively attenuated LV cardiomyocyte hypertrophy, lung inflammation, lung fibrosis. These findings suggest that methods to reduce IsoLGs may be useful for HF therapy.


Assuntos
Cardiomegalia/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Lipídeos/genética , Pneumonia/tratamento farmacológico , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Benzilaminas/farmacologia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/patologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Remodelação Ventricular/efeitos dos fármacos
19.
Int Arch Occup Environ Health ; 92(6): 873-881, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30955093

RESUMO

OBJECTIVES: Urinary excretion of 2,5-hexanedione is currently used to estimate the exposure levels of hexane occurring to an individual during the previous work shift. However, because hexane exposures and urinary 2,5-hexanedione levels can vary considerably from day to day, and subchronic to chronic exposures to hexane are required to produce neuropathy, this biomarker may not accurately reflect the risk of an individual for developing hexane neuropathy. This investigation examines the potential of hexane-derived pyrrole adducts produced on globin and plasma proteins as markers for integrating cumulative exposures. Because the pyrrole markers incorporate bioactivation of hexane to 2,5-hexandione and the initial step of protein adduction involved in hexane-induced neuropathy, they potentially can serve as biomarkers of effect through reflecting pathogenetic events within the nervous system. Additionally, pyrrole formation is an irreversible reaction suggesting that hexane-derived protein pyrroles can be used to assess cumulative exposures to provide a better characterization of individual susceptibilities. METHODS: To examine the utility of the proposed markers, blood samples were obtained from eleven workers who used hexane for granulating metal powders in a slurry to produce metal machining die tools and four non-exposed volunteers. Globin and plasma were isolated, and the proteins were digested using pepsin, reacted with Ehrlich's reagent and the level of pyrrole adducts were determined by absorbance at 530 nm. To determine the dose-response curve and dynamic range of the assay, erythrocytes were incubated with a range of 2,5-hexanedione concentrations and the net absorbance at 530 nm of isolated globin was measured. RESULTS: Pyrrole was detected in both the globin and plasma samples of the workers exposed to hexane and the levels of pyrroles in plasma were positively correlated with the levels of pyrroles in globin for most of the workers. CONCLUSIONS: This investigation demonstrates that detectable levels of hexane-derived protein pyrrole adducts are produced on peripheral proteins following occupational exposures to hexane and supports the utility of measuring pyrroles for integrating cumulative exposures to hexane.


Assuntos
Globinas/metabolismo , Hexanos/metabolismo , Plasma/química , Pirróis/sangue , Biomarcadores/sangue , Globinas/química , Humanos , Exposição Ocupacional/efeitos adversos , Pirróis/metabolismo
20.
BMC Pharmacol Toxicol ; 20(1): 1, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611293

RESUMO

BACKGROUND: 2-Hydroxybenzylamine (2-HOBA) is a selective scavenger of dicarbonyl electrophiles that protects proteins and lipids from being modified by these electrophiles. It is currently being developed for use as a nutritional supplement to help maintain good health and protect against the development of conditions associated with dicarbonyl electrophile formation, such as the cognitive decline associated with Mild Cognitive Impairment and Alzheimer's disease. METHODS: In this first-in-human study, the safety, tolerability, and pharmacokinetics of six ascending single oral doses of 2-HOBA acetate were tested in eighteen healthy human volunteers. RESULTS: Reported adverse events were mild and considered unlikely to be related to 2-HOBA. There were no clinically significant changes in vital signs, ECG recordings, or clinical laboratory parameters. 2-HOBA was fairly rapidly absorbed, with a tmax of 1-2 h, and eliminated, with a t1/2 of approximately 2 h. Both tmax and t1/2 were independent of dose level, while Cmax and AUC increased proportionally with dose level. CONCLUSIONS: 2-HOBA acetate was safe and well-tolerated at doses up to 825 mg in healthy human volunteers, positioning it as a good candidate for continued development as a nutritional supplement. TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (NCT03176940).


Assuntos
Acetatos/farmacocinética , Benzilaminas/farmacocinética , Suplementos Nutricionais , Fármacos Neuroprotetores/farmacocinética , Acetatos/sangue , Administração Oral , Adulto , Área Sob a Curva , Benzilaminas/sangue , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Fármacos Neuroprotetores/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...