Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280154

RESUMO

BackgroundThe variant of concern, Omicron, has become the sole circulating SARS-CoV-2 variant for the past several months. Omicron subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 evolved over the time, with BA.1 causing the largest wave of infections globally in December 2021- January 2022. In this study, we compare the clinical outcomes in patients infected with different Omicron subvariants and compare the relative viral loads, and recovery of infectious virus from upper respiratory specimens. MethodsSARS-CoV-2 positive remnant clinical specimens, diagnosed at the Johns Hopkins Microbiology Laboratory between December 2021 and July 2022, were used for whole genome sequencing. The clinical outcomes of infections with Omicron subvariants were compared to infections with BA.1. Cycle threshold values (Ct) and the recovery of infectious virus on VeroTMPRSS2 cell line from clinical specimens were compared. ResultsThe BA.1 was associated with the largest increase in SARS-CoV-2 positivity rate and COVID-19 related hospitalizations at the Johns Hopkins system. After a peak in January cases fell in the spring, but the emergence of BA.2.12.1 followed by BA.5 in May 2022 led to an increase in case positivity and admissions. BA.1 infections had a lower mean Ct when compared to other Omicron subvariants. BA.5 samples had a greater likelihood of having infectious virus at Ct values less than 20. ConclusionsOmicron subvariants continue to associate with a relatively high positivity and admissions. The BA.5 infections are more while BA.2 infections are less likely to have infectious virus, suggesting potential differences in infectibility during the Omicron waves. FundingCenters for Disease Control and Prevention contract 75D30121C11061, NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, and The Modeling Infectious Diseases in Healthcare Network (MInD) under awards U01CK000589.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275210

RESUMO

BackgroundIncreased reinfection rates with SARS-CoV-2 have recently been reported, with some locations basing reinfection on a second positive PCR test at least 90 days after initial infection. MethodsWe identified cases where patients had two positive tests for SARS-CoV-2 and evaluated which of these had been sequenced as part of our surveillance efforts, and evaluated sequencing and clinical data. Results750 patients (920 samples) had a positive test at least 90 days after the initial test. The median time between tests was 377 days, and 724 (79%) of the post 90-day positives were collected after the emergence of the Omicron variant in November 2021. Sequencing was attempted on 231 samples and successful in 127. Successful sequencing spiked during the Omicron surge and showed higher median days from initial infection compared to failed sequences (median 398 days compared to 276 days, p<0.0005). A total of 122 (98%) patients showed evidence of reinfection, 45 of which had sequence proven reinfection and 77 had inferred reinfections (later sequence showed a clade that was not circulating when the patient was initially infected). Children accounted for only 4% of reinfections. 43 (96%) of 45 infections with sequence proven reinfection were caused by the Omicron variant, 41 (91%) were symptomatic, 32 (71%), were vaccinated prior to the second infection, and 6 (13%) were Immunosuppressed. Only 2 (4%) were hospitalized, and both had underlying conditions. ConclusionSequence proven reinfections increased with the Omicron variant but generally caused mild infections.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270337

RESUMO

BackgroundPrior observation has shown differences in COVID-19 hospitalization rates between SARS-CoV-2 variants, but limited information describes differences in hospitalization outcomes. MethodsPatients admitted to 5 hospitals with COVID-19 were included if they had hypoxia, tachypnea, tachycardia, or fever, and data to describe SARS-CoV-2 variant, either from whole genome sequencing, or inference when local surveillance showed [≥]95% dominance of a single variant. The average effect of SARS-CoV-2 variant on 14-day risk of severe disease, defined by need for advanced respiratory support, or death was evaluated using models weighted on propensity scores derived from baseline clinical features. ResultsSevere disease or death within 14 days occurred for 950 of 3,365 (28%) unvaccinated patients and 178 of 808 (22%) patients with history of vaccination or prior COVID-19. Among unvaccinated patients, the relative risk of 14-day severe disease or death for Delta variant compared to ancestral lineages was 1.34 (95% confidence interval [CI] 1.13-1.55). Compared to Delta variant, this risk for Omicron patients was 0.78 (95% CI 0.62-0.97) and compared to ancestral lineages was 1.04 (95% CI 0.84-1.24). Among Omicron and Delta infections, patients with history of vaccination or prior COVID-19 had one-half the 14-day risk of severe disease or death (adjusted hazard ratio 0.46, IQR 0.34-0.62) but no significant outcome difference between Delta and Omicron infections. ConclusionsAlthough the risk of severe disease or death for unvaccinated patients with Omicron was lower than Delta, it was similar to ancestral lineages. Severe outcomes were less common in vaccinated patients, but there was no difference between Delta and Omicron infections.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269927

RESUMO

BackgroundThe increase in SARS-CoV-2 infections in December 2021 in the United States was driven primarily by the Omicron variant which largely displaced the Delta over a three week span. Outcomes from infection with the Omicron remain uncertain. We evaluate whether clinical outcomes and viral loads differ between Delta and Omicron infections during the period when both variants were co-circulating. MethodsRemnant clinical specimens from patients that tested positive for SARS-CoV-2 after standard of care testing between the last week of November and the end of December 2021were used for whole viral genome sequencing. Cycle threshold values (Ct) for viral RNA, the presence of infectious virus, and levels of respiratory IgG were measured, and clinical outcomes were obtained. Differences in each measure were compared between variants stratified by vaccination status. ResultsThe Omicron variant displaced the Delta during the study period and constituted 95% of the circulating lineages by the end of December 2021. Patients with Omicron infections (N= 1121) were more likely to be vaccinated compared to patients with Delta (N = 910), but were less likely to be admitted, require ICU level care, or succumb to infection regardless of vaccination status. There was no significant difference in Ct values based on the lineage regardless of the vaccination status. Recovery of infectious virus in cell culture was reduced in boosted patients compared to fully vaccinated without a booster and unvaccinated when infected with the Delta lineage. However, in patients with Omicron infections, recovery of infectious virus was not affected by vaccination. ConclusionsOmicron infections of vaccinated individuals are expected, yet admissions are less frequent. Admitted patients might develop severe disease comparable to Delta. Efforts for reducing the Omicron transmission are required as even though the admission risk is lower, the numbers of infections continue to be high. Research in context Evidence before this studyThe unprecedented increase in COVID-19 cases in the month of December 2021, associated with the displacement of the Delta variant with the Omicron, triggered a lot of concerns. An understanding of the disease severity associated with infections with Omicron is essential as well as the virological determinants that contributed to its widespread predominance. We searched PubMed for articles published up to January 23, 2022, using the search terms ("Omicron") AND ("Disease severity") as well as ("Omicron") AND ("Viral load") And/ or ("Cell culture"). Our search yielded 3 main studies that directly assessed the omicrons clinical severity in South Africa, its infectious viral load compared to Delta, and the dynamics of viral RNA shedding. In South Africa, compared to Delta, Omicron infected patients showed a significant reduction in severe disease. In this study, Omicron and non-Omicron variants were characterized based on S gene target failure using the TaqPath COVID-19 PCR (Thermo Fisher Scientific). In the study from Switzerland that assessed the infectious viral load in Omicron versus Delta, the authors analyzed only 18 Omicron samples that were all from vaccinated individuals to show that compared to Delta, Omicron had equivalent infectious viral titers. The third study that assessed the Omicron viral dynamics showed that the peak viral RNA in Omicron infections is lower than Delta. No published studies assessed the clinical discrepancies of Omicron and Delta infected patients from the US, nor comprehensively assessed, by viral load and cell culture studies, the characteristics of both variants stratified by vaccination status. Added value of this studyTo the best of our knowledge, this is the only study to date to compare the clinical characteristics and outcomes after infection with the Omicron variant compared to Delta in the US using variants characterized by whole genome sequencing and a selective time frame when both variant co-circulated. It is also the first study to stratify the analysis based on the vaccination status and to compare fully vaccinated patients who didnt receive a booster vaccination to patients who received a booster vaccination. In addition, we provide a unique viral RNA and infectious virus load analyses to compare Delta and Omicron samples from unvaccinated, fully vaccinated, and patients with booster vaccination. Implications of all the available evidenceOmicron associated with a significant increase in infections in fully and booster vaccinated individuals but with less admissions and ICU level care. Admitted patients showed similar requirements for supplemental oxygen and ICU level care when compared to Delta admitted patients. Viral loads were similar in samples from Omicron and Delta infected patients regardless of the vaccination status. The recovery of infectious virus on cell culture was reduced in samples from patients infected with Delta who received a booster dose, but this was not the case with Omicron. The recovery of infectious virus was equivalent in Omicron infected unvaccinated, fully vaccinated, and samples from patients who received booster vaccination. FundingNIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061.

5.
Microbiol Insights ; 11: 1178636118758651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467579

RESUMO

Acute respiratory infections (ARIs) are the leading cause of infectious disease-related morbidity, hospitalization, and morbidity among children worldwide. This study aimed to assess the viral and bacterial causes of ARI morbidity and mortality in children under 5 years in Senegal. Nasopharyngeal samples were collected from children under 5 years who had ARI. Viruses and bacteria were identified using multiplex real-time reverse transcription-polymerase chain reaction and conventional biochemical techniques, respectively. Adenovirus was the most prevalent virus (50%; n = 81), followed by influenza virus (45.68%, n = 74), rhinovirus (40.12%; n = 65), enterovirus (25.31%; n = 41), and respiratory syncytial virus (16.05%; n = 26), whereas Streptococcus pneumoniae (17%; n = 29), Moraxella catarrhalis (15.43%; n = 25), and Haemophilus influenzae (8.02%; n = 13) were the most commonly isolated bacteria. Virus pathogens seem more likely to be more prevalent in our settings and were often associated with bacteria and S. pneumoniae (6%; 16) coinfection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...