Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(21): 211902, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295113

RESUMO

Deeply virtual Compton scattering (DVCS) allows one to probe generalized parton distributions describing the 3D structure of the nucleon. We report the first measurement of the DVCS beam-spin asymmetry using the CLAS12 spectrometer with a 10.2 and 10.6 GeV electron beam scattering from unpolarized protons. The results greatly extend the Q^{2} and Bjorken-x phase space beyond the existing data in the valence region and provide 1600 new data points measured with unprecedented statistical uncertainty, setting new, tight constraints for future phenomenological studies.

2.
Phys Rev Lett ; 129(18): 182501, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374671

RESUMO

We present the first measurement of dihadron angular correlations in electron-nucleus scattering. The data were taken with the CLAS detector and a 5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets. Relative to deuterium, the nuclear yields of charged-pion pairs show a strong suppression for azimuthally opposite pairs, no suppression for azimuthally nearby pairs, and an enhancement of pairs with large invariant mass. These effects grow with increased nuclear size. The data are qualitatively described by the gibuu model, which suggests that hadrons form near the nuclear surface and undergo multiple scattering in nuclei.These results show that angular correlation studies can open a new way to elucidate how hadrons form and interact inside nuclei.

3.
Phys Rev Lett ; 128(6): 062005, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213183

RESUMO

High precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here a high precision multidimensional study of single π^{+} SIDIS data over a large kinematic range in Bjorken x, fractional energy, and transverse momentum of the hadron as well as photon virtualities Q^{2} ranging from 1-7 GeV^{2}. In particular, the structure function ratio F_{LU}^{sinϕ}/F_{UU} has been determined, where F_{LU}^{sinϕ} is a twist-3 quantity that can reveal novel aspects of emergent hadron mass and quark-gluon correlations within the nucleon. The data's impact on the evolving understanding of the underlying reaction mechanisms and their kinematic variation is explored using theoretical models for the different contributing transverse momentum dependent parton distribution functions.

4.
Phys Rev Lett ; 126(8): 082002, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709753

RESUMO

The quark structure of the f_{2}(1270) meson has, for many years, been assumed to be a pure quark-antiquark (qq[over ¯]) resonance with quantum numbers J^{PC}=2^{++}. Recently, it was proposed that the f_{2}(1270) is a molecular state made from the attractive interaction of two ρ mesons. Such a state would be expected to decay strongly to final states with charged pions due to the dominant decay ρ→π^{+}π^{-}, whereas decay to two neutral pions would likely be suppressed. Here, we measure for the first time the reaction γp→π^{0}π^{0}p, using the CEBAF Large Acceptance Spectrometer detector at Jefferson Lab for incident beam energies between 3.6 and 5.4 GeV. Differential cross sections, dσ/dt, for f_{2}(1270) photoproduction are extracted with good precision due to low backgrounds and are compared to theoretical calculations.

5.
Phys Rev Lett ; 126(6): 062002, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635681

RESUMO

A first measurement of the longitudinal beam spin asymmetry A_{LU} in the semi-inclusive electroproduction of pairs of charged pions is reported. A_{LU} is a higher-twist observable and offers the cleanest access to the nucleon twist-3 parton distribution function e(x). Data have been collected in the Hall-B at Jefferson Lab by impinging a 5.498-GeV electron beam on a liquid-hydrogen target, and reconstructing the scattered electron and the pion pair with the CLAS detector. One-dimensional projections of the A_{LU}^{sinϕ_{R}} moments are extracted for the kinematic variables of interest in the valence quark region. The understanding of dihadron production is essential for the interpretation of observables in single-hadron production in semi-inclusive DIS, and pioneering measurements of single-spin asymmetries in dihadron production open a new avenue in studies of QCD dynamics.

6.
Phys Rev Lett ; 127(26): 262501, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029502

RESUMO

We present the first measurement of the timelike Compton scattering process, γp→p^{'}γ^{*}(γ^{*}→e^{+}e^{-}), obtained with the CLAS12 detector at Jefferson Lab. The photon beam polarization and the decay lepton angular asymmetries are reported in the range of timelike photon virtualities 2.25

7.
Phys Rev Lett ; 125(18): 182001, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196236

RESUMO

We have measured beam-spin asymmetries to extract the sinϕ moment A_{LU}^{sinϕ} from the hard exclusive e[over →]p→e^{'}nπ^{+} reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The A_{LU}^{sinϕ} moment has been measured up to 6.6 GeV^{2} in -t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time. The experimental results in very forward kinematics demonstrate the sensitivity to chiral-odd and chiral-even GPDs. In very backward kinematics where the TDA framework is applicable, we found A_{LU}^{sinϕ} to be negative, while a sign change was observed near 90° in the center of mass. The unique results presented in this Letter will provide critical constraints to establish reaction mechanisms that can help to further develop the GPD and TDA frameworks.

8.
Phys Rev Lett ; 123(7): 072001, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31491124

RESUMO

We report on the measurement of the γp→J/ψp cross section from E_{γ}=11.8 GeV down to the threshold at 8.2 GeV using a tagged photon beam with the GlueX experiment. We find that the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section dσ/dt has an exponential slope of 1.67±0.39 GeV^{-2} at 10.7 GeV average energy. The LHCb pentaquark candidates P_{c}^{+} can be produced in the s channel of this reaction. We see no evidence for them and set model-dependent upper limits on their branching fractions B(P_{c}^{+}→J/ψp) and cross sections σ(γp→P_{c}^{+})×B(P_{c}^{+}→J/ψp).

9.
Phys Rev Lett ; 121(9): 092501, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230869

RESUMO

Short-range correlated (SRC) nucleon pairs are a vital part of the nucleus, accounting for almost all nucleons with momentum greater than the Fermi momentum (k_{F}). A fundamental characteristic of SRC pairs is having large relative momenta as compared to k_{F}, and smaller center of mass (c.m.) which indicates a small separation distance between the nucleons in the pair. Determining the c.m. momentum distribution of SRC pairs is essential for understanding their formation process. We report here on the extraction of the c.m. motion of proton-proton (pp) SRC pairs in carbon and, for the first time in heavier and ansymetric nuclei: aluminum, iron, and lead, from measurements of the A(e,e^{'}pp) reaction. We find that the pair c.m. motion for these nuclei can be described by a three-dimensional Gaussian with a narrow width ranging from 140 to 170 MeV/c, approximately consistent with the sum of two mean-field nucleon momenta. Comparison with calculations appears to show that the SRC pairs are formed from mean-field nucleons in specific quantum states.

10.
Phys Rev Lett ; 120(6): 062501, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481214

RESUMO

We measured the g_{1} spin structure function of the deuteron at low Q^{2}, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W≈1.9 GeV. The generalized Gerasimov-Drell-Hearn sum, the moment Γ_{1}^{d} and the spin polarizability γ_{0}^{d} are precisely determined down to a minimum Q^{2} of 0.02 GeV^{2} for the first time, about 2.5 times lower than that of previous data. We compare them to several χPT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the χPT domain.

11.
Phys Rev Lett ; 119(20): 202004, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219329

RESUMO

We report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment uses the 6 GeV electron beam from the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab incident on a pressurized ^{4}He gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron is detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber is used to detect the recoiling ^{4}He nuclei. We measure beam-spin asymmetries larger than those observed on the free proton in the same kinematic domain. From these, we are able to extract, in a model-independent way, the real and imaginary parts of the only ^{4}He Compton form factor, H_{A}. This first measurement of coherent deeply virtual Compton scattering on the ^{4}He nucleus, with a fully exclusive final state via nuclear recoil tagging, leads the way toward 3D imaging of the partonic structure of nuclei.

12.
Phys Rev Lett ; 118(24): 242002, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665642

RESUMO

We report the first beam-target double-polarization asymmetries in the γ+n(p)→π^{-}+p(p) reaction spanning the nucleon resonance region from invariant mass W=1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses and have led to significant revisions for several γnN^{*} resonance photocouplings.

13.
Phys Rev Lett ; 115(21): 212003, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636848

RESUMO

Unpolarized and beam-polarized fourfold cross sections (d^{4}σ/dQ^{2}dx_{B}dtdϕ) for the ep→e^{'}p^{'}γ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 (Q^{2},x_{B},t) bins over the widest phase space ever explored in the valence-quark region. Several models of generalized parton distributions (GPDs) describe the data well at most of our kinematics. This increases our confidence that we understand the GPD H, expected to be the dominant contributor to these observables. Through a leading-twist extraction of Compton form factors, these results support the model predictions of a larger nucleon size at lower quark-momentum fraction x_{B}.

14.
Phys Rev Lett ; 114(6): 062003, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25723209

RESUMO

There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ϵ) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ϵ at Q(2)=1.45 GeV(2). This measurement is consistent with the size of the form factor discrepancy at Q(2)≈1.75 GeV(2) and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV(2).

15.
Phys Rev Lett ; 114(3): 032001, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25658994

RESUMO

A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep→e^{'}p^{'}γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q^{2}, x_{B}, t, and ϕ, for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.

16.
Phys Rev Lett ; 110(24): 242301, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25165915

RESUMO

We have measured cross sections for the γ(3)He → pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron.

17.
Phys Rev Lett ; 109(11): 112001, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005620

RESUMO

Exclusive π(0) electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q(2), x(B), t, and ϕ(π), in the Q(2) range from 1.0 to 4.6 GeV(2), -t up to 2 GeV(2), and x(B) from 0.1 to 0.58. Structure functions σ(T)+ϵσ(L), σ(TT), and σ(LT) were extracted as functions of t for each of 17 combinations of Q(2) and x(B). The data were compared directly with two handbag-based calculations including both longitudinal and transversity generalized parton distributions (GPDs). Inclusion of only longitudinal GPDs very strongly underestimates σ(T)+ϵσ(L) and fails to account for σ(TT) and σ(LT), while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity-flip and helicity nonflip processes. The results confirm that exclusive π(0) electroproduction offers direct experimental access to the transversity GPDs.

18.
Phys Rev Lett ; 108(14): 142001, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540786

RESUMO

We report on the first measurement of the F(2) structure function of the neutron from the semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≲100 MeV/c and their angles to ≳100° relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F(2)(n) data collected cover the nucleon-resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65

19.
Phys Rev Lett ; 105(26): 262002, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21231647

RESUMO

We report the first measurement of the transverse momentum dependence of double-spin asymmetries in semi-inclusive production of pions in deep-inelastic scattering off the longitudinally polarized proton. Data have been obtained using a polarized electron beam of 5.7 GeV with the CLAS detector at the Jefferson Lab (JLab). Modulations of single spin asymmetries over the azimuthal angle between lepton scattering and hadron production planes ϕ have been measured over a wide kinematic range in Bjorken x and virtual photon squared four-momentum Q2. A significant nonzero sin2ϕ single spin asymmetry was observed for the first time indicating strong spin-orbit correlations for transversely polarized quarks in the longitudinally polarized proton.

20.
Phys Rev Lett ; 103(1): 012301, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19659138

RESUMO

We report a measurement of the differential cross section for the gamman-->pi- p process from the CLAS detector at Jefferson Laboratory in Hall B for photon energies between 1.0 and 3.5 GeV and pion center-of-mass (c.m.) angles (thetac.m.) between 50 degrees and 115 degrees. We confirm a previous indication of a broad enhancement around a c.m. energy ([sqrt]s) of 2.1 GeV at thetac.m.=90 degrees in the scaled differential cross section s7dsigma/dt and a rapid falloff in a center-of-mass energy region of about 400 MeV following the enhancement. Our data show an angular dependence of this enhancement as the suggested scaling region is approached for thetac.m. from 70 degrees to 105 degrees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...