Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Fish (Oxf) ; 24(1): 187-195, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37063475

RESUMO

Behavioural thermoregulation enables ectotherms to access habitats providing conditions within their temperature optima, especially in periods of extreme thermal conditions, through adjustments to their behaviours that provide a "whole-body" response to temperature changes. Although freshwater fish have been detected as moving in response to temperature changes to access habitats that provide their thermal optima, there is a lack of integrative studies synthesising the extent to which this is driven by behaviour across different species and spatial scales. A quantitative global synthesis of behavioural thermoregulation in freshwater fish revealed that across 77 studies, behavioural thermoregulatory movements by fish were detected both vertically and horizontally, and from warm to cool waters and, occasionally, the converse. When fish moved from warm to cooler habitats, the extent of the temperature difference between these habitats decreased with increasing latitude, with juvenile and non-migratory fishes tolerating greater temperature differences than adult and anadromous individuals. With most studies focused on assessing movements of cold-water salmonids during summer periods, there remains an outstanding need for work on climatically vulnerable, non-salmonid fishes to understand how these innate thermoregulatory behaviours could facilitate population persistence in warming conditions.

2.
Environ Pollut ; 320: 121120, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682615

RESUMO

Microplastics (plastics <5 mm) are an environmental contaminant that can negatively impact the behaviour and physiology of aquatic biota. Although parasite infection can also alter the behaviour and physiology of their hosts, few studies have investigated how microplastic and parasite exposure interact to affect hosts. Accordingly, an interaction experiment tested how exposure to environmentally relevant microplastic concentrations and the trophically transmitted parasite Pomphorhynchus tereticollis affected the parasite load, condition metrics and feeding rate of the freshwater fish final host chub Squalius cephalus. Microplastic exposure was predicted to increase infection susceptibility, resulting in increased parasite loads, whereas parasite and microplastic exposure were expected to synergistically and negatively impact condition indices and feeding rates. Following chronic (≈170 day) dietary microplastic exposure, fish were exposed to a given number of gammarids (4/8/12/16/20), with half of the fish presented with parasite infected individuals, before a comparative functional response experiment tested differences in feeding rates on different live prey densities. Contrary to predictions, dietary microplastic exposure did not affect parasite abundance at different levels of parasite exposure, specific growth rate was the only condition index that was lower for exposed but unexposed fish, with no single or interactive effects of microplastic exposure detected. However, parasite infected fish had significantly lower feeding rates than unexposed fish in the functional response experiment, with exposed but unexposed fish also showing an intermediate decrease in feeding rates. Thus, the effects of parasitism on individuals were considerably stronger than microplastic exposure, with no evidence of interactive effects. Impacts of environmentally relevant microplastic levels might thus be relatively minor versus other stressors, with their interactive effects difficult to predict based on their single effects.


Assuntos
Cyprinidae , Parasitos , Doenças Parasitárias , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Interações Hospedeiro-Parasita , Água Doce/parasitologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
J Anim Ecol ; 88(7): 1066-1078, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30982964

RESUMO

Ecological theory on the trophic impacts of invasive fauna on native competitors is equivocal. Whilst increased interspecific competition can result in coexisting species having constricted and diverged trophic niches, the competing species might instead increase their niche sizes to maintain energy intakes. Empirical experiments can test invasion theory on competitive interactions and niche sizes across different spatial scales and complexity. The consequences of increased interspecific competition from a model alien fish Leuciscus idus were tested on two taxonomically and trophically similar native fishes, Squalius cephalus and Barbus barbus. Competitive interactions were tested in tank aquaria using comparative functional responses (CFRs) and cohabitation trials. The consequences of these competitive interactions for the trophic niche sizes and positions of the fishes were tested in pond mesocosms. Comparative functional responses revealed that compared to B. barbus, L. idus had significantly higher attack and consumption rates; cohabitation trials revealed B. barbus growth rates were depressed in sympatry with L. idus. For L. idus and S. cephalus, differences in their functional response parameters and growth rates were not significant. Pond mesocosms used stable isotope metrics to quantify shifts in the trophic niche sizes of the fishes between allopatry and sympatry using a substitutive experimental design. Isotopic niches were smaller and more divergent in sympatric paired species than predicted by their allopatric treatments, suggesting trophic impacts from interspecific competition. However, an all-species sympatric treatment revealed similar niche sizes with allopatry. This maintenance of niche sizes in the presence of all species potentially resulted from the buffering of direct competitive effects of the species pairs by indirect effects. Experimental predictions from tank aquaria assisted the interpretation of the constricted and diverged trophic niches detected in the paired-species sympatric treatments of the pond mesocosms. However, the all-species sympatric treatment of this experiment revealed greater complexity in the outcomes of the competitive interactions within and between the species. These results have important implications for understanding how alien species integrate into food webs and influence the trophic relationships between native species.


Assuntos
Ecologia , Espécies Introduzidas , Animais , Cadeia Alimentar , Estado Nutricional , Simpatria
4.
Funct Ecol ; 32(2): 486-495, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29576673

RESUMO

Invasive species can cause substantial ecological impacts on native biodiversity. While ecological theory attempts to explain the processes involved in the trophic integration of invaders into native food webs and their competitive impacts on resident species, results are equivocal. In addition, quantifying the relative strength of impacts from non-native species (interspecific competition) versus the release of native conspecifics (intraspecific competition) is important but rarely completed.Two model non-native fishes, the globally invasive Cyprinus carpio and Carassius auratus, and the model native fish Tinca tinca, were used in a pond experiment to test how increased intra- and interspecific competition influenced trophic niches and somatic growth rates. This was complemented by samples collected from three natural fish communities where the model fishes were present. The isotopic niche, calculated using stable isotope data, represented the trophic niche.The pond experiment used additive and substitutive treatments to quantify the trophic niche variation that resulted from intra- and interspecific competitive interactions. Although the trophic niche sizes of the model species were not significantly altered by any competitive treatment, they all resulted in patterns of interspecific niche divergence. Increased interspecific competition caused the trophic niche of T. tinca to shift to a significantly higher trophic position, whereas intraspecific competition caused its position to shift towards elevated δ13C. These patterns were independent of impacts on fish growth rates, which were only significantly altered when interspecific competition was elevated.In the natural fish communities, patterns of trophic niche partitioning between the model fishes was evident, with no niche sharing. Comparison of these results with those of the experiment revealed the most similar results between the two approaches were for the niche partitioning between sympatric T. tinca and C. carpio.These results indicate that trophic niche divergence facilitates the integration of introduced species into food webs, but there are differences in how this manifests between introductions that increase inter- and intraspecific competition. In entirety, these results suggest that the initial ecological response to an introduction appears to be a trophic re-organisation of the food web that minimises the trophic interactions between competing species. A plain language summary is available for this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...