Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 20(21): 3036-48, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17079690

RESUMO

Hedgehog signaling has been linked to cell proliferation in a variety of systems; however, its effects on the cell cycle have not been closely studied. In the vertebrate retina, Hedgehog's effects are controversial, with some reports emphasizing increased proliferation and others pointing to a role in cell cycle exit. Here we demonstrate a novel role for Hedgehog signaling in speeding up the cell cycle in the developing retina by reducing the length of G1 and G2 phases. These fast cycling cells tend to exit the cell cycle early. Conversely, retinal progenitors with blocked Hedgehog signaling cycle more slowly, with longer G1 and G2 phases, and remain in the cell cycle longer. Hedgehog may modulate cell cycle kinetics through activation of the key cell cycle activators cyclin D1, cyclin A2, cyclin B1, and cdc25C. These findings support a role for Hedgehog in regulating the conversion from slow cycling stem cells to fast cycling transient amplifying progenitors that are closer to cell cycle exit.


Assuntos
Diferenciação Celular , Proteínas Hedgehog/fisiologia , Neurônios/fisiologia , Retina/crescimento & desenvolvimento , Células-Tronco/fisiologia , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Neurônios/citologia , Retina/citologia , Transdução de Sinais , Células-Tronco/citologia , Xenopus
2.
J Comp Neurol ; 481(4): 331-9, 2005 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-15593335

RESUMO

An increasing body of evidence indicates that gene expression can be modulated by posttranscriptional mechanisms. RNA binding proteins, for instance, control gene expression at many regulatory levels including RNA splicing, transport, stability, and translation. Although numerous RNA binding proteins have been identified, very few have been studied extensively in the context of developmental processes. We focused our study on five neural RNA binding proteins: one Musashi homolog, Nrp-1, one member of the Bruno gene family, BruL-1 (also known as Etr-1), and three members of the ELAV/Hu family, ElrB, ElrC, and ElrD. As an initial step in addressing their function during Xenopus neurogenesis, we used in situ hybridization to determine their expression patterns during retinal development. We found that RNA binding proteins belonging to different families have distinct spatio-temporal expression. These combinatorial expression patterns are reminiscent of previously described cell type-specific expression patterns of transcription factors during retinal development. The distribution of RNA binding proteins within the retina suggests that these regulators of posttranscriptional events may play important roles in multiple steps of retinogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Retina/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Proteínas ELAV , Proteína Semelhante a ELAV 2 , Perfilação da Expressão Gênica , Neurônios/metabolismo , Neuropilina-1/metabolismo , Organogênese/fisiologia , Retina/citologia , Retina/embriologia , Células Ganglionares da Retina/metabolismo , Ribonucleoproteínas/metabolismo , Xenopus laevis/embriologia
3.
Int J Dev Biol ; 48(8-9): 993-1001, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15558490

RESUMO

During the development of the nervous system, after a given number of divisions, progenitors exit the cell cycle and differentiate as neurons or glial cells. Some cells however do not obey this general rule and persist in a progenitor state. These cells, called stem cells, have the ability to self-renew and to generate different lineages. Understanding the mechanisms that allow stem cells to "resist" differentiating stimuli is currently one of the most fascinating research areas for biologists. The amphibian and fish retinas, known to contain stem cell populations, have been pioneering models for neural stem cell research. The Xenopus retina enabled the characterization of the genetic processes that occur in the path from a pluripotent stem cell to a committed progenitor to a differentiated neuron. More recently, the discovery that avian and mammalian retinas also contain stem cell populations, has contributed to the definitive view of the adult nervous system of upper vertebrates as a more dynamic and plastic structure than previously thought. This has attracted the attention of clinicians who are attempting to employ stem cells for transplantation into damaged tissue. Research in this area is promising and will represent a key instrument in the fight against blindness and retinal dystrophies. In this review, we will focus primarily on describing the main characteristics of various retinal stem cell populations, highlighting their divergences during evolution, and their potential for retinal cell transplantation. We will also give an overview of the signaling cascades that could modulate their potential and plasticity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Retina/citologia , Retina/embriologia , Células-Tronco/citologia , Animais , Aves , Diferenciação Celular , Corpo Ciliar/metabolismo , Peixes , Humanos , Modelos Biológicos , Neurônios/metabolismo , Doenças Retinianas/terapia , Transplante de Células-Tronco/métodos , Xenopus
4.
Development ; 131(4): 851-62, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14736748

RESUMO

RNA-binding proteins play key roles in the post-transcriptional regulation of gene expression but so far they have not been studied extensively in the context of developmental processes. We report on the molecular cloning and spatio-temporal expression of a novel RNA-binding protein, XSEB4R, which is strongly expressed in the nervous system. This study is focused on the analysis of Xseb4R in the context of primary neurogenesis and retinogenesis. To study Xseb4R function during eye development, we set up a new protocol allowing in vivo lipofection of antisense morpholino oligonucleotides into the retina. The resulting XSEB4R knockdown causes an impairment of neuronal differentiation, with an increase in the number of glial cells. By contrast, our gain-of-function analysis demonstrates that Xseb4R strongly promotes neural differentiation. We also showed a similar function during primary neurogenesis. Consistent with this proneural effect, we found that in the open neural plate Xseb4R expression is upregulated by the proneural gene XNgnr1, as well as by the differentiation gene XNeuroD, but is inhibited by the Notch/Delta pathway. Altogether, our results suggest for the first time a proneural effect for a RNA-binding protein involved in the genetic network of retinogenesis.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Retina/embriologia , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Embrião não Mamífero/metabolismo , Vetores Genéticos , Lipossomos , Dados de Sequência Molecular , Oligonucleotídeos/metabolismo , Proteínas de Ligação a RNA/genética , Retina/metabolismo , Alinhamento de Sequência , Xenopus , Proteínas de Xenopus/genética
5.
Development ; 130(8): 1565-77, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12620982

RESUMO

Sonic hedgehog is involved in eye field separation along the proximodistal axis. We show that Hh signalling continues to be important in defining aspects of the proximodistal axis as the optic vesicle and optic cup mature. We show that two other Hedgehog proteins, Banded hedgehog and Cephalic hedgehog, related to the mouse Indian hedgehog and Desert hedgehog, respectively, are strongly expressed in the central retinal pigment epithelium but excluded from the peripheral pigment epithelium surrounding the ciliary marginal zone. By contrast, downstream components of the Hedgehog signalling pathway, Gli2, Gli3 and X-Smoothened, are expressed in this narrow peripheral epithelium. We show that this zone contains cells that are in the proliferative state. This equivalent region in the adult mammalian eye, the pigmented ciliary epithelium, has been identified as a zone in which retinal stem cells reside. These data, combined with double labelling and the use of other retinal pigment epithelium markers, show that the retinal pigment epithelium of tadpole embryos has a molecularly distinct peripheral to central axis. In addition, Gli2, Gli3 and X-Smoothened are also expressed in the neural retina, in the most peripheral region of the ciliary marginal zone, where retinal stem cells are found in Xenopus, suggesting that they are good markers for retinal stem cells. To test the role of the Hedgehog pathway at different stages of retinogenesis, we activated the pathway by injecting a dominant-negative form of PKA or blocking it by treating embryos with cyclopamine. Embryos injected or treated at early stages display clear proximodistal defects in the retina. Interestingly, the main phenotype of embryos treated with cyclopamine at late stages is a severe defect in RPE differentiation. This study thus provides new insights into the role of Hedgehog signalling in the formation of the proximodistal axis of the eye and the differentiation of retinal pigment epithelium.


Assuntos
Diferenciação Celular/fisiologia , Epitélio Pigmentado Ocular/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Xenopus/embriologia , Animais , Biomarcadores , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Fator de Transcrição PAX2 , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/efeitos dos fármacos , Epitélio Pigmentado Ocular/metabolismo , Proteínas Repressoras , Células-Tronco/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alcaloides de Veratrum/farmacologia , Xenopus/anatomia & histologia , Xenopus/genética , Proteínas de Xenopus
6.
Mol Cell Neurosci ; 22(1): 25-36, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12595236

RESUMO

We investigated the function of Xrx1 during Xenopus retinogenesis. Xrx1 overexpression lengthens mitotic activity and ectopically activates the expression of markers of undifferentiated progenitors in the developing retina. We assayed Xrx1 ability to support proliferation with a cell-autonomous mechanism by in vivo lipofection of single retinal progenitors. Xrx1 overexpression increases clonal proliferation while Xrx1 functional inactivation exerts the opposite effect. We also compared the effects of Xrx1 with those of the cyclin-dependent kinase cdk2, a strong mitotic promoter. Despite the similar increase in clonal proliferation displayed by both factors, Xrx1 and cdk2 act differently on retinal cell fate determination. cdk2/cyclinA2 lipofected retinas show a decrease in early-born cell types as ganglion cells and cones and an increase in late-born types such as bipolar neurons. On the contrary, Xrx1 lipofected retinas show no changes in the proportions of the different cell types, thus suggesting a role in supporting multipotency of retinal progenitors.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Multipotentes/metabolismo , Neurônios/metabolismo , Retina/embriologia , Proteínas de Xenopus , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem da Célula/genética , Células Cultivadas , Células Clonais/citologia , Células Clonais/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Embrião não Mamífero , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Multipotentes/citologia , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Células Fotorreceptoras/citologia , Células Fotorreceptoras/embriologia , Células Fotorreceptoras/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...