Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15407, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965251

RESUMO

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Assuntos
Comunicação Autócrina , Pressão Sanguínea , AMP Cíclico , Oligopeptídeos , Transdução de Sinais , Animais , Humanos , Camundongos , AMP Cíclico/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Rim/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo
2.
J Clin Med ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792281

RESUMO

Background/Objectives: A superinfection occurs when a new, secondary organism colonizes an existing infection. Spine infections are associated with high patient morbidity and sometimes require multiple irrigations and debridements (I&Ds). When multiple I&Ds are required, the risk of complications increases. The purpose of this study was to report our experience with spine superinfections and determine which patients are typically affected. Methods: A retrospective case series of spine superinfections and a retrospective case-control analysis were conducted. Data were collected manually from electronic medical records. Spine I&Ds were identified. Groups were created for patients who had multiple I&Ds for (1) a recurrence of the same causative organism or (2) a superinfection with a novel organism. Preoperative demographic, clinical, and microbiologic data were compared between these two outcomes. A case series of superinfections with descriptive data was constructed. Lastly, two illustrative cases were provided in a narrative format. Results: A total of 92 patients were included in this analysis. Superinfections occurred after 6 out of the 92 (7%) initial I&Ds and were responsible for 6 out of the 24 (25%) repeat I&Ds. The preoperative erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) of the patients with a superinfection were significantly lower than those in the control group (p = 0.022 and p = 0.032). Otherwise, the observed differences in the preoperative variables were not statistically different. In the six cases of superinfection, the presence of high-risk comorbidities, a history of substance abuse, or a lack of social support were commonly observed. The superinfecting organisms included Candida, Pseudomonas, Serratia, Klebsiella, Enterobacter, and Staphylococcus species. Conclusions: Superinfections are a devastating complication requiring reoperation after initial spine I&D. Awareness of the possibility of superinfection and common patient archetypes can be helpful for clinicians and care teams. Future work is needed to examine how to identify, help predict, and prevent spine superinfections.

3.
Antioxid Redox Signal ; 38(16-18): 1150-1166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36401517

RESUMO

Aims: Reactive oxygen species are highly reactive molecules generated in different subcellular compartments. Both the dopamine D5 receptor (D5R) and endoplasmic reticulum (ER)-resident peroxiredoxin-4 (PRDX4) play protective roles against oxidative stress. This study is aimed at investigating the interaction between PRDX4 and D5R in regulating oxidative stress in the kidney. Results: Fenoldopam (FEN), a D1R and D5R agonist, increased PRDX4 protein expression, mainly in non-lipid rafts, in D5R-HEK 293 cells. FEN increased the co-immunoprecipitation of D5R and PRDX4 and their colocalization, particularly in the ER. The efficiency of Förster resonance energy transfer was increased with FEN treatment measured with fluorescence lifetime imaging microscopy. Silencing of PRDX4 increased hydrogen peroxide production, impaired the inhibitory effect of FEN on hydrogen peroxide production, and increased the production of interleukin-1ß, tumor necrosis factor (TNF), and caspase-12 in renal cells. Furthermore, in Drd5-/- mice, which are in a state of oxidative stress, renal cortical PRDX4 was decreased whereas interleukin-1ß, TNF, and caspase-12 were increased, relative to their normotensive wild-type Drd5+/+ littermates. Innovation: Our findings demonstrate a novel relationship between D5R and PRDX4 and the consequent effects of this relationship in attenuating hydrogen peroxide production in the ER and the production of proinflammatory cytokines. This study provides the potential for the development of biomarkers and new therapeutics for renal inflammatory disorders, including hypertension. Conclusion: PRDX4 interacts with D5R to decrease oxidative stress and inflammation in renal cells that may have the potential for translational significance. Antioxid. Redox Signal. 38, 1150-1166.


Assuntos
Peróxido de Hidrogênio , Receptores de Dopamina D5 , Camundongos , Humanos , Animais , Receptores de Dopamina D5/metabolismo , Interleucina-1beta/metabolismo , Peróxido de Hidrogênio/metabolismo , Caspase 12/metabolismo , Células HEK293 , Rim/metabolismo , Fenoldopam/metabolismo , Fenoldopam/farmacologia , Estresse Oxidativo , Inflamação/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
4.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652569

RESUMO

The SNX-PXA-RGS-PXC subfamily of sorting nexins (SNXs) belongs to the superfamily of SNX proteins. SNXs are characterized by the presence of a common phox-homology (PX) domain, along with other functional domains that play versatile roles in cellular signaling and membrane trafficking. In addition to the PX domain, the SNX-PXA-RGS-PXC subfamily, except for SNX19, contains a unique RGS (regulators of G protein signaling) domain that serves as GTPase activating proteins (GAPs), which accelerates GTP hydrolysis on the G protein α subunit, resulting in termination of G protein-coupled receptor (GPCR) signaling. Moreover, the PX domain selectively interacts with phosphatidylinositol-3-phosphate and other phosphoinositides found in endosomal membranes, while also associating with various intracellular proteins. Although SNX19 lacks an RGS domain, all members of the SNX-PXA-RGS-PXC subfamily serve as dual regulators of receptor cargo signaling and endosomal trafficking. This review discusses the known and proposed functions of the SNX-PXA-RGS-PXC subfamily and how it participates in receptor signaling (both GPCR and non-GPCR) and endosomal-based membrane trafficking. Furthermore, we discuss the difference of this subfamily of SNXs from other subfamilies, such as SNX-BAR nexins (Bin-Amphiphysin-Rvs) that are associated with retromer or other retrieval complexes for the regulation of receptor signaling and membrane trafficking. Emerging evidence has shown that the dysregulation and malfunction of this subfamily of sorting nexins lead to various pathophysiological processes and disorders, including hypertension.


Assuntos
Endossomos/metabolismo , Hipertensão/metabolismo , Membranas Intracelulares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Nexinas de Classificação/metabolismo , Animais , Humanos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...