Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1157, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310321

RESUMO

Immunization based antibody discovery is plagued by the paucity of antigen-specific B cells. Identifying these cells is akin to finding needle in a haystack. Current and emerging technologies while effective, are limited in terms of capturing the antigen-specific repertoire. We report on the bulk purification of antigen-specific B-cells and the benefits it offers to various antibody discovery platforms. Using five different antigens, we show hit rates of 51-88%, compared to about 5% with conventional methods. We also show that this purification is highly efficient with loss of only about 2% antigen specific cells. Furthermore, we compared clones in which cognate chains are preserved with those from display libraries in which chains either from total B cells (TBC) or antigen-specific B cells (AgSC) underwent combinatorial pairing. We found that cognate chain paired clones and combinatorial clones from AgSC library had higher frequency of functional clones and showed greater diversity in sequence and paratope compared to clones from the TBC library. This antigen-specific B-cell selection technique exemplifies a process improvement with reduced cycle time and cost, by removing undesired clones prior to screening and increasing the chance of capturing desirable and rare functional clones in the repertoire.


Assuntos
Anticorpos , Imunização , Sítios de Ligação de Anticorpos , Biblioteca Gênica , Epitopos
2.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34914635

RESUMO

Stromal cells are emerging as key drivers of autoimmunity, partially because they produce inflammatory chemokines that orchestrate inflammation. Chemokine expression is regulated transcriptionally but also through posttranscriptional mechanisms, the specific drivers of which are still incompletely defined. CCL2 (MCP1) is a multifunctional chemokine that drives myeloid cell recruitment. During experimental autoimmune encephalomyelitis (EAE), an IL-17-driven model of multiple sclerosis, CCL2 produced by lymph node (LN) stromal cells was essential for immunopathology. Here, we showed that Ccl2 mRNA upregulation in human stromal fibroblasts in response to IL-17 required the RNA-binding protein IGF-2 mRNA-binding protein 2 (IGF2BP2, IMP2), which is expressed almost exclusively in nonhematopoietic cells. IMP2 binds directly to CCL2 mRNA, markedly extending its transcript half-life, and is thus required for efficient CCL2 secretion. Consistent with this, Imp2-/- mice showed reduced CCL2 production in LNs during EAE, causing impairments in monocyte recruitment and Th17 cell polarization. Imp2-/- mice were fully protected from CNS inflammation. Moreover, deletion of IMP2 after EAE onset was sufficient to mitigate disease severity. These data showed that posttranscriptional control of Ccl2 in stromal cells by IMP2 was required to permit IL-17-driven progression of EAE pathogenesis.


Assuntos
Autoimunidade , Encefalomielite Autoimune Experimental/genética , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/genética , Células Th17/imunologia , Regulação para Cima , Animais , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Proteínas de Ligação a RNA/biossíntese , Células Th17/patologia
3.
Sci Immunol ; 6(61)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215679

RESUMO

Excessive cytokine activity underlies many autoimmune conditions, particularly through the interleukin-17 (IL-17) and tumor necrosis factor-α (TNFα) signaling axis. Both cytokines activate nuclear factor κB, but appropriate induction of downstream effector genes requires coordinated activation of other transcription factors, notably, CCAAT/enhancer binding proteins (C/EBPs). Here, we demonstrate the unexpected involvement of a posttranscriptional "epitranscriptomic" mRNA modification [N6-methyladenosine (m6A)] in regulating C/EBPß and C/EBPδ in response to IL-17A, as well as IL-17F and TNFα. Prompted by the observation that C/EBPß/δ-encoding transcripts contain m6A consensus sites, we show that Cebpd and Cebpb mRNAs are subject to m6A modification. Induction of C/EBPs is enhanced by an m6A methylase "writer" and suppressed by a demethylase "eraser." The only m6A "reader" found to be involved in this pathway was IGF2BP2 (IMP2), and IMP2 occupancy of Cebpd and Cebpb mRNA was enhanced by m6A modification. IMP2 facilitated IL-17-mediated Cebpd mRNA stabilization and promoted translation of C/EBPß/δ in response to IL-17A, IL-17F, and TNFα. RNA sequencing revealed transcriptome-wide IL-17-induced transcripts that are IMP2 influenced, and RNA immunoprecipitation sequencing identified the subset of mRNAs that are directly occupied by IMP2, which included Cebpb and Cebpd Lipocalin-2 (Lcn2), a hallmark of autoimmune kidney injury, was strongly dependent on IL-17, IMP2, and C/EBPß/δ. Imp2-/- mice were resistant to autoantibody-induced glomerulonephritis (AGN), showing impaired renal expression of C/EBPs and Lcn2 Moreover, IMP2 deletion initiated only after AGN onset ameliorated disease. Thus, posttranscriptional regulation of C/EBPs through m6A/IMP2 represents a previously unidentified paradigm of cytokine-driven autoimmune inflammation.


Assuntos
Adenosina/análogos & derivados , Proteínas Estimuladoras de Ligação a CCAAT/imunologia , Interleucina-17/imunologia , Proteínas de Ligação a RNA/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adenosina/imunologia , Animais , Autoimunidade/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular , Feminino , Humanos , Inflamação/imunologia , Interleucina-17/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/genética
4.
Nat Immunol ; 20(5): 534-545, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962593

RESUMO

Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (TH17 cells) promote inflammation through the induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of LN and splenic stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without signaling via the IL-17 receptor, activated FRCs underwent cell cycle arrest and apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for the development of TH17 cells, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. Induction of the transcriptional co-activator IκBζ via IL-17 signaling mediated increased glucose uptake and expression of the gene Cpt1a, encoding CPT1A, a rate-limiting enzyme of mitochondrial fatty acid oxidation. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of the activation of inflamed LN stromal cells, through metabolic reprogramming required to support proliferation and survival.


Assuntos
Proliferação de Células , Fibroblastos/imunologia , Interleucina-17/imunologia , Linfonodos/imunologia , Células Estromais/imunologia , Animais , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Fibroblastos/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Linfonodos/citologia , Linfonodos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo , Células Estromais/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
5.
Sci Signal ; 11(551)2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301788

RESUMO

Interleukin-17A (IL-17A) not only stimulates immunity to fungal pathogens but also contributes to autoimmune pathology. IL-17 is only a modest activator of transcription in experimental tissue culture settings. However, IL-17 controls posttranscriptional events that enhance the expression of target mRNAs. Here, we showed that the RNA binding protein (RBP) Arid5a (AT-rich interactive domain-containing protein 5a) integrated multiple IL-17-driven signaling pathways through posttranscriptional control of mRNA. IL-17 induced expression of Arid5a, which was recruited to the adaptor TRAF2. Arid5a stabilized IL-17-induced cytokine transcripts by binding to their 3' untranslated regions and also counteracted mRNA degradation mediated by the endoribonuclease MCPIP1 (Regnase-1). Arid5a inducibly associated with the eukaryotic translation initiation complex and facilitated the translation of the transcription factors (TFs) IκBζ (Nfkbiz ) and C/EBPß (Cebpb). These TFs in turn transactivated IL-17-dependent promoters. Together, these data indicated that Arid5a orchestrates a feed-forward amplification loop, which promoted IL-17 signaling by controlling mRNA stability and translation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interleucina-17/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Inflamação , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo
6.
Trends Immunol ; 38(5): 310-322, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28254169

RESUMO

Interleukin (IL)-17 is the founding member of a novel family of inflammatory cytokines. While the proinflammatory properties of IL-17 are key to its host-protective capacity, unrestrained IL-17 signaling is associated with immunopathology, autoimmune disease, and cancer progression. In this review we discuss both the activators and the inhibitors of IL-17 signal transduction, and also the physiological implications of these events. We highlight the surprisingly diverse means by which these regulators control expression of IL-17-dependent inflammatory genes, as well as the major target cells that respond to IL-17 signaling.


Assuntos
Doenças Autoimunes/imunologia , Citocinas/imunologia , Mediadores da Inflamação/imunologia , Interleucina-17/imunologia , Transdução de Sinais/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Modelos Imunológicos , Transdução de Sinais/genética
7.
Immunohorizons ; 1(7): 133-141, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30761389

RESUMO

IL-17 activates NF-κB and inducing expression of proinflammatory genes. IL-17 drives disease in autoimmune conditions, and anti-IL-17 antibodies have shown impressive success in the clinic. Although produced by lymphocytes, IL-17 predominantly signals in fibroblasts and epithelial cells. IL-17-driven inflammation is kept in check by negative feedback signaling molecules, including the ubiquitin editing enzyme A20, whose gene TNFΑIP3 is and similarly linked to autoimmune disease susceptibility. Accordingly, we hypothesized that ABIN-1 might play a role in negatively regulating IL-17 signaling activity. Indeed, ABIN-1 enhanced both tonic and IL-17-dependent NF-κB signaling in IL-17-responsive fibroblast cells. Interestingly, the inhibitory activities of ABIN-1 on IL-17 signaling were independent of A20. ABIN-1 is a known NF-κB target gene, and we found that IL-17-induced activation of NF-κB led to enhanced ABIN-1 mRNA expression and promoter activity. Surprisingly, however, the ABIN-1 protein was inducibly degraded following IL-17 signaling in a proteasome-dependent manner. Thus, ABIN-1, acting independently of A20, restricts both baseline and IL-17-induced inflammatory gene expression. We conclude that IL-17-induced signals lead to degradation of ABIN-1, thereby releasing a constitutive cellular brake on NF-κB activation.

8.
J Immunol ; 198(2): 767-775, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920272

RESUMO

The IL-17 family cytokines IL-17A and IL-17C drive the pathogenesis of psoriatic skin inflammation, and anti-IL-17A Abs were recently approved to treat human psoriasis. Little is known about mechanisms that restrain IL-17 cytokine-mediated signaling, particularly IL-17C. In this article, we show that the endoribonuclease MCP-1-induced protein 1 (MCPIP1; also known as regnase-1) is markedly upregulated in human psoriatic skin lesions. Similarly, MCPIP1 was overexpressed in the imiquimod (IMQ)-driven mouse model of cutaneous inflammation. Mice with an MCPIP1 deficiency (Zc3h12a+/-) displayed no baseline skin inflammation, but they showed exacerbated pathology following IMQ treatment. Pathology in Zc3h12a+/- mice was associated with elevated expression of IL-17A- and IL-17C-dependent genes, as well as with increased accumulation of neutrophils in skin. However, IL-17A and IL-17C expression was unaltered, suggesting that the increased inflammation in Zc3h12a+/- mice was due to enhanced downstream IL-17R signaling. Radiation chimeras demonstrated that MCPIP1 in nonhematopoietic cells is responsible for controlling skin pathology. Moreover, Zc3h12a+/-Il17ra-/- mice given IMQ showed almost no disease. To identify which IL-17RA ligand was essential, Zc3h12a+/-Il17a-/- and Zc3h12a+/-Il17c-/- mice were given IMQ; these mice had reduced but not fully abrogated pathology, indicating that MCPIP1 inhibits IL-17A and IL-17C signaling. Confirming this hypothesis, Zc3h12a-/- keratinocytes showed increased responsiveness to IL-17A and IL-17C stimulation. Thus, MCPIP1 is a potent negative regulator of psoriatic skin inflammation through IL-17A and IL-17C. Moreover, to our knowledge, MCPIP1 is the first described negative regulator of IL-17C signaling.


Assuntos
Dermatite/imunologia , Psoríase/imunologia , Ribonucleases/imunologia , Fatores de Transcrição/imunologia , Animais , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Interleucina-17/imunologia , Queratinócitos/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
9.
Immunity ; 43(3): 475-87, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26320658

RESUMO

Interleukin-17 (IL-17) induces pathology in autoimmunity and infections; therefore, constraint of this pathway is an essential component of its regulation. We demonstrate that the signaling intermediate MCPIP1 (also termed Regnase-1, encoded by Zc3h12a) is a feedback inhibitor of IL-17 receptor signal transduction. MCPIP1 knockdown enhanced IL-17-mediated signaling, requiring MCPIP1's endoribonuclease but not deubiquitinase domain. MCPIP1 haploinsufficient mice showed enhanced resistance to disseminated Candida albicans infection, which was reversed in an Il17ra(-/-) background. Conversely, IL-17-dependent pathology in Zc3h12a(+/-) mice was exacerbated in both EAE and pulmonary inflammation. MCPIP1 degraded Il6 mRNA directly but only modestly downregulated the IL-6 promoter. However, MCPIP1 strongly inhibited the Lcn2 promoter by regulating the mRNA stability of Nfkbiz, encoding the IκBζ transcription factor. Unexpectedly, MCPIP1 degraded Il17ra and Il17rc mRNA, independently of the 3' UTR. The cumulative impact of MCPIP1 on IL-6, IκBζ, and possibly IL-17R subunits results in a biologically relevant inhibition of IL-17 signaling.


Assuntos
Inflamação/imunologia , Interleucina-17/imunologia , Ribonucleases/imunologia , Transdução de Sinais/imunologia , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/imunologia , Proteínas de Fase Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Candida albicans/imunologia , Candida albicans/fisiologia , Candidíase/genética , Candidíase/imunologia , Candidíase/microbiologia , Linhagem Celular , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Immunoblotting , Inflamação/genética , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipocalina-2 , Lipocalinas/genética , Lipocalinas/imunologia , Lipocalinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia , Proteínas Oncogênicas/metabolismo , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleases/genética , Ribonucleases/metabolismo
10.
J Virol ; 88(17): 10259-63, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24942568

RESUMO

Interleukin-21 (IL-21) can be produced by CD8 T cells from HIV-1-infected individuals and those with autoimmune disease, but the mechanism remains poorly understood. Here we demonstrate that IL-21-producing CD8 T cells are not associated with CD4 depletion and are absent in patients with idiopathic CD4 lymphocytopenia. Instead, IL-21 production by CD8 T cells was associated with high levels of activation, suggesting that these cells emerge as a consequence of excessive chronic immune activation rather than CD4 lymphopenia.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Interleucinas/metabolismo , Linfócitos T CD4-Positivos , Humanos , Ativação Linfocitária
11.
J Virol ; 87(9): 5170-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449791

RESUMO

HIV-specific cytotoxic T lymphocytes (CTL) are preferentially primed for apoptosis, and this may represent a viral escape mechanism. We hypothesized that HIV-infected individuals that control virus to undetectable levels without antiretroviral therapy (ART) (elite controllers [EC]) have the capacity to upregulate survival factors that allow them to resist apoptosis. To address this, we performed cross-sectional and longitudinal analysis of proapoptotic (cleaved caspase-3) and antiapoptotic (Bcl-2) markers of cytomegalovirus (CMV) and HIV-specific CD8 T cells in a cohort of HIV-infected subjects with various degrees of viral control on and off ART. We demonstrated that HIV-specific CTL from EC are more resistant to apoptosis than those with pharmacologic control (successfully treated patients [ST]), despite similar in vivo conditions. Longitudinal analysis of chronically infected persons starting ART revealed that the frequency of HIV-specific T cells prone to death decreased, suggesting that this phenotype is partially reversible even though it never achieves the levels present in EC. Elucidating the apoptotic factors contributing to the survival of CTL in EC is paramount to our development of effective HIV-1 vaccines. Furthermore, a better understanding of cellular markers that can be utilized to predict response durability in disease- or vaccine-elicited responses will advance the field.


Assuntos
Apoptose , Linfócitos T CD8-Positivos/citologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Adulto , Idoso , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Caspase 3/genética , Caspase 3/imunologia , Estudos Transversais , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...