Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 159(1): 286-98, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22408091

RESUMO

Phosphite (Phi), a phloem-mobile oxyanion of phosphorous acid (H(3)PO(3)), protects plants against diseases caused by oomycetes. Its mode of action is unclear, as evidence indicates both direct antibiotic effects on pathogens as well as inhibition through enhanced plant defense responses, and its target(s) in the plants is unknown. Here, we demonstrate that the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) exhibits an unusual biphasic dose-dependent response to Phi after inoculation of Arabidopsis (Arabidopsis thaliana), with characteristics of indirect activity at low doses (10 mm or less) and direct inhibition at high doses (50 mm or greater). The effect of low doses of Phi on Hpa infection was nullified in salicylic acid (SA)-defective plants (sid2-1, NahG) and in a mutant impaired in SA signaling (npr1-1). Compromised jasmonate (jar1-1) and ethylene (ein2-1) signaling or abscisic acid (aba1-5) biosynthesis, reactive oxygen generation (atrbohD), or accumulation of the phytoalexins camalexin (pad3-1) and scopoletin (f6'h1-1) did not affect Phi activity. Low doses of Phi primed the accumulation of SA and Pathogenesis-Related protein1 transcripts and mobilized two essential components of basal resistance, Enhanced Disease Susceptibility1 and Phytoalexin Deficient4, following pathogen challenge. Compared with inoculated, Phi-untreated plants, the gene expression, accumulation, and phosphorylation of the mitogen-activated protein kinase MPK4, a negative regulator of SA-dependent defenses, were reduced in plants treated with low doses of Phi. We propose that Phi negatively regulates MPK4, thus priming SA-dependent defense responses following Hpa infection.


Assuntos
Arabidopsis/microbiologia , Oomicetos/patogenicidade , Fosfitos/farmacologia , Doenças das Plantas/microbiologia , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistência à Doença , Relação Dose-Resposta a Droga , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Indóis/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oomicetos/efeitos dos fármacos , Oxilipinas/metabolismo , Fosforilação , Imunidade Vegetal , Ácido Salicílico/metabolismo , Escopoletina/metabolismo , Transdução de Sinais , Tiazóis/metabolismo
2.
J Biol Chem ; 285(16): 12071-7, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20164192

RESUMO

Arabidopsis thaliana sucrose nonfermenting 1-related protein kinase 1 complexes belong to the SNF1/AMPK/SnRK1 protein kinase family that shares an ancestral function as central regulators of metabolism. In A. thaliana, the products of AtSnAK1 and AtSnAK2, orthologous to yeast genes, have been shown to autophosphorylate and to phosphorylate/activate the AtSnRK1.1 catalytic subunit on Thr(175). The phosphorylation of these kinases has been investigated by site-directed mutagenesis and tandem mass spectrometry. The autophosphorylation site of AtSnAK2 was identified as Thr(154), and it was shown to be required for AtSnAK catalytic activity. Interestingly, activated AtSnRK1 exerted a negative feedback phosphorylation on AtSnAK2 at Ser(261) (Ser(260) of AtSnAK1) that was dependent on AtSnAK autophosphorylation. The dynamics of these reciprocal phosphorylation events on the different kinases was established, and structural modeling allowed clarification of the topography of the AtSnAK phosphorylation sites. A mechanism is proposed to explain the observed changes in the enzymatic properties of each kinase triggered by these phosphorylation events.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Ativação Enzimática , Retroalimentação Fisiológica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sacarose/metabolismo , Espectrometria de Massas em Tandem
3.
Proc Natl Acad Sci U S A ; 107(1): 502-7, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20018655

RESUMO

The PII protein is a signal integrator involved in the regulation of nitrogen metabolism in bacteria and plants. Upon sensing of cellular carbon and energy availability, PII conveys the signal by interacting with target proteins, thereby modulating their biological activity. Plant PII is located to plastids; therefore, to identify new PII target proteins, PII-affinity chromatography of soluble extracts from Arabidopsis leaf chloroplasts was performed. Several proteins were retained only when Mg-ATP was present in the binding medium and they were specifically released from the resin by application of a 2-oxoglutarate-containing elution buffer. Mass spectroscopy of SDS/PAGE-resolved protein bands identified the biotin carboxyl carrier protein subunits of the plastidial acetyl-CoA carboxylase (ACCase) and three other proteins containing a similar biotin/lipoyl-binding motif as putative PII targets. ACCase is a key enzyme initiating the synthesis of fatty acids in plastids. In in vitro reconstituted assays supplemented with exogenous ATP, recombinant Arabidopsis PII inhibited chloroplastic ACCase activity, and this was completely reversed in the presence of 2-oxoglutarate, pyruvate, or oxaloacetate. The inhibitory effect was PII-dose-dependent and appeared to be PII-specific because ACCase activity was not altered in the presence of other tested proteins. PII decreased the V(max) of the ACCase reaction without altering the K(m) for acetyl-CoA. These data show that PII function has evolved between bacterial and plant systems to control the carbon metabolism pathway of fatty acid synthesis in plastids.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Proteínas de Arabidopsis/metabolismo , Biotina/metabolismo , Cloroplastos/enzimologia , Ácidos Cetoglutáricos/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Subunidades Proteicas/metabolismo , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/genética , Arabidopsis/citologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dados de Sequência Molecular , Proteínas PII Reguladoras de Nitrogênio/genética , Folhas de Planta/enzimologia , Folhas de Planta/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
FEBS Lett ; 583(10): 1649-52, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19397910

RESUMO

Two phosphoenolpyruvate carboxylase (PEPC) kinase genes (PPCk1 and PPCk2) are present in the Arabidopsis genome; only PPCk1 is expressed in rosette leaves. Homozygous lines of two independent PPCk1 T-DNA-insertional mutants showed very little (dln1), or no (csi8) light-induced PEPC phosphorylation and a clear retard in growth under our greenhouse conditions. A mass-spectrometry-based analysis revealed significant changes in metabolite profiles. However, the anaplerotic pathway initiated by PEPC was only moderately altered. These data establish the PPCk1 gene product as responsible for leaf PEPC phosphorylation in planta and show that the absence of PEPC phosphorylation has pleiotropic consequences on plant metabolism.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Mutação , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/metabolismo , Genes de Plantas , Espectrometria de Massas , Fosfoenolpiruvato Carboxilase/genética , Fosforilação , Folhas de Planta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
5.
New Phytol ; 176(4): 775-781, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17997763

RESUMO

Here, the kinetic properties and immunolocalization of phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in young stems of Fagus sylvatica were investigated. The aim of the study was to test the hypothesis that there is a C4-like photosynthesis system in the stems of this C3 tree species. The activity, optimal pH and L-malate sensitivity of PEPC, and the Michaelis-Menten constant (Km) for phosphoenolpyruvate (PEP), were measured in protein extracts from current-year stems and leaves. A gel blot experiment and immunolocalization studies were performed to examine the isozyme complexity of PEPC and the tissue distribution of PEPC and Rubisco in stems. Leaf and stem PEPCs exhibited similar, classical values characteristic of C3 PEPCs, with an optimal pH of c. 7.8, a Km for PEP of c. 0.3 mM and a IC50 for L-malate (the L-malate concentration that inhibits 50% of PEPC activity at the Km for PEP) of c. 0.1 mM. Western blot analysis showed the presence of two PEPC subunits (molecular mass c. 110 kDa) both in leaves and in stems. Immunogold labelling did not reveal any differential localization of PEPC and Rubisco, neither between nor inside cells. This study suggests that C4-type photosynthesis does not occur in stems of F. sylvatica and underlines the importance of PEPC in nonphotosynthetic carbon fixation by most stem tissues (fixation of respired CO2 and fixation via the anaplerotic pathway).


Assuntos
Fagus/enzimologia , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese/fisiologia , Caules de Planta/enzimologia , Árvores/enzimologia , Transporte Proteico , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Plant Mol Biol ; 52(6): 1153-68, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14682615

RESUMO

Formate dehydrogenase (FDH, EC 1.2.1.2.) is a soluble mitochondrial enzyme capable of oxidizing formate into CO2 in the presence of NAD+. It is abundant in non-green tissues and scarce in photosynthetic tissues. Under stress, FDH transcripts (and protein) accumulate in leaves, and leaf mitochondria acquire the ability to use formate as a respiratory substrate. In this paper, we describe the analysis of transgenic potato plants under-expressing FDH, obtained in order to understand the physiological function of FDH. Plants expressing low FDH activities were selected and the study was focused on a line (AS23) showing no detectable FDH activity. AS23 plants were morphologically indistinguishable from control plants, and grew normally under standard conditions. However, mitochondria isolated from AS23 tubers could not use formate as a respiratory substrate. Steady-state levels of formate were higher in AS23 leaves and tubers than in control plants. Tubers of untransformed plants oxidized 14C formate into 14CO2 but AS23 tubers accumulated it. In order to reveal a possible phenotype under stress conditions, control and AS23 plants were submitted to drought and cold. These treatments dramatically induced FDH transcripts in control plants but, whatever the growth conditions, no 1.4 kb FDH transcripts were detected in leaves of AS23 plants. Amongst various biochemical and molecular differences between stressed AS23 and control plants, the most striking was a dramatically faster accumulation of proline in the leaves of drought-stressed plants under-expressing FDH.


Assuntos
Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Prolina/metabolismo , Solanum tuberosum/enzimologia , Aminoácidos/metabolismo , Temperatura Baixa , Desastres , Formaldeído/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/isolamento & purificação , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Cinética , Espectroscopia de Ressonância Magnética/métodos , Metanol/metabolismo , Pressão Osmótica , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fatores de Tempo
7.
Biochem Biophys Res Commun ; 311(4): 966-71, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-14623276

RESUMO

Most mitochondrial proteins are encoded by the nucleus, translated in the cytosol, and imported. Mitochondrial precursors generally contain their targeting information in a cleavable N-terminal presequence, which is rich in hydroxylated and positively charged residues and can form amphiphilic alpha-helices. We report the in vivo targeting of green fluorescent protein (GFP) by the FDH presequence, as well as several truncated or mutated variants. Some of these mutations modify the amphiphilicity of the predicted alpha-helix. The removal of the first two residues abolishes import and some single amino acid mutations strongly inhibit import. Such strong effects on import had not been observed in similar studies on other plant mitochondrial presequences, suggesting that the FDH presequence is a particularly good model for functional studies.


Assuntos
Formiato Desidrogenases/metabolismo , Proteínas Luminescentes/metabolismo , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Nicotiana/metabolismo , Transporte Proteico/fisiologia , Solanum tuberosum/metabolismo , Sequência de Aminoácidos , Formiato Desidrogenases/química , Formiato Desidrogenases/genética , Proteínas de Fluorescência Verde , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transporte Proteico/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solanum tuberosum/química , Solanum tuberosum/genética , Relação Estrutura-Atividade , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...