Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 146: 105574, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533461

RESUMO

With the emergence of Delta and Omicron variants, many other important variants of SARS-CoV-2, which cause Coronavirus disease-2019, including A.30, are reported to increase the concern created by the global pandemic. The A.30 variant, reported in Tanzania and other countries, harbors spike gene mutations that help this strain to bind more robustly and to escape neutralizing antibodies. The present study uses molecular modelling and simulation-based approaches to investigate the key features of this strain that result in greater infectivity. The protein-protein docking results for the spike protein demonstrated that additional interactions, particularly two salt-bridges formed by the mutated residue Lys484, increase binding affinity, while the loss of key residues at the N terminal domain (NTD) result in a change to binding conformation with monoclonal antibodies, thus escaping their neutralizing effects. Moreover, we deeply studied the atomic features of these binding complexes through molecular simulation, which revealed differential dynamics when compared to wild type. Analysis of the binding free energy using MM/GBSA revealed that the total binding free energy (TBE) for the wild type receptor-binding domain (RBD) complex was -58.25 kcal/mol in contrast to the A.30 RBD complex, which reported -65.59 kcal/mol. The higher TBE for the A.30 RBD complex signifies a more robust interaction between A.30 variant RBD with ACE2 than the wild type, allowing the variant to bind and spread more promptly. The BFE for the wild type NTD complex was calculated to be -65.76 kcal/mol, while the A.30 NTD complex was estimated to be -49.35 kcal/mol. This shows the impact of the reported substitutions and deletions in the NTD of A.30 variant, which consequently reduce the binding of mAb, allowing it to evade the immune response of the host. The reported results will aid the development of cross-protective drugs against SARS-CoV-2 and its variants.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
2.
Comput Biol Med ; 146: 105537, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504219

RESUMO

Recently a novel coactivator, Leupaxin (LPXN), has been reported to interact with Androgen receptor (AR) and play a significant role in the invasion and progression of prostate cancer. The interaction between AR and LPXN occurs in a ligand-dependent manner and has been reported that the LIM domain in the Leupaxin interacts with the LDB (ligand-binding domain) domain AR. However, no detailed study is available on how the LPXN interacts with AR and increases the (prostate cancer) PCa progression. Considering the importance of the novel co-activator, LPXN, the current study also uses state-of-the-art methods to provide atomic-level insights into the binding of AR and LPXN and the impact of the most frequent clinical mutations H874Y, T877A, and T877S on the binding and function of LPXN. Protein coupling analysis revealed that the three mutants favour the robust binding of LPXN than the wild type by altering the hydrogen bonding network. Further understanding of the binding variations was explored through dissociation constant prediction which demonstrated similar reports as the docking results. A molecular simulation approaches further revealed the dynamic features which reported variations in the dynamics stability, protein packing, hydrogen bonding network, and residues flexibility index. Furthermore, we also assessed the protein motion and free energy landscape which also demonstrated variations in the internal dynamics. The binding free energy calculation revealed -32.95 ± 0.17 kcal/mol for the wild type, for H874Y the total binding energy (BFE) was -36.69 ± 0.11 kcal/mol, for T877A the BFE was calculated to be -38.78 ± 0.17 kcal/mol while for T877S the BFE -41.16 ± 0.12 kcal/mol. This shows that the binding of LPXN is increased by these mutations which consequently increase the PCa invasion and motility. In conclusion, the current study helps in understanding the protein networks and particular the coupling of AR-LPXN in prostate cancer and is of great interest in deciphering the molecular mechanism of disease and therapeutics developments.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Humanos , Ligantes , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ligação Proteica , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...