Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis ; 24(2): 2, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300555

RESUMO

We investigated cross-orientation inhibition with the recently developed continuous tracking technique. We designed an experiment where participants tracked the horizontal motion of a narrow vertical grating. The target was superimposed on one of three different backgrounds, in separate sessions: a uniform gray background or a sinusoidal grating oriented either parallel or orthogonal to the target. Both mask and target where phase reversed. We cross-correlated target and mouse movements and compared the peaks and lags of response with the different masks. Our results are in agreement with previous findings on cross-orientation inhibition: The orthogonal mask had a weak effect on the peaks and lags of correlation as a function of target contrast, consistently with a divisive effect of the mask, while the parallel mask acted subtractively on the response. Interestingly, lags of correlation decreased approximately linearly with contrast, with decrements of the order of 100 ms, even at 10 times the detection threshold, confirming that it is possible to investigate behavioral differences above threshold using the continuous tracking paradigm.


Assuntos
Inibição Psicológica , Movimento , Humanos , Animais , Camundongos , Movimento (Física)
2.
J Vis ; 22(2): 3, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103756

RESUMO

Continuous tracking is a newly developed technique that allows fast and efficient data acquisition by asking participants to "track" a stimulus varying in some property (usually position in space). Tracking is a promising paradigm for the investigation of dynamic features of perception and could be particularly well suited for testing ecologically relevant situations difficult to study with classical psychophysical paradigms. The high rate of data collection may be useful in studies on clinical populations and children, who are unable to undergo long testing sessions. In this study, we designed tracking experiments with two novel stimulus features, numerosity and size, proving the feasibility of the technique outside standard object tracking. We went on to develop an ideal observer model that characterizes the results in terms of efficiency of conversion of stimulus strength into responses, and identification of early and late noise sources. Our ideal observer closely modeled results from human participants, providing a generalized framework for the interpretation of tracking data. The proposed model allows to use the tracking paradigm in various perceptual domains, and to study the divergence of human participants from ideal behavior.


Assuntos
Modelos Psicológicos , Percepção Visual , Criança , Humanos , Percepção de Movimento , Mascaramento Perceptivo , Percepção Espacial , Percepção Visual/fisiologia
3.
J Vis ; 21(13): 8, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913950

RESUMO

Connecting pairs of items causes robust underestimation of the numerosity of an ensemble, presumably by invoking grouping mechanisms. Here we asked whether this underestimation in numerosity judgments could be revealed and further explored by continuous tracking, a newly developed technique that allows for fast and efficient data acquisition and monitors the dynamics of the responses. Participants continuously reproduced the perceived numerosity of a cloud of dots by moving a cursor along a number line, while the number of dots and the proportion connected by lines varied over time following two independent random walks. The technique was robust and efficient, and correlated well with results obtained with a standard psychophysics task. Connecting objects with lines caused an underestimation of approximately 15% during tracking, agreeing with previous studies. The response to the lines was slower than the response to the physical numerosity, with a delay of approximately 150 ms, suggesting that this extra time is necessary for processing the grouping effect.


Assuntos
Julgamento , Reconhecimento Visual de Modelos , Viés , Humanos , Psicofísica
4.
Brain Inform ; 8(1): 19, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586519

RESUMO

Interest in the studying of functional connections in the brain has grown considerably in the last decades, as many studies have pointed out that alterations in the interaction among brain areas can play a role as markers of neurological diseases. Most studies in this field treat the brain network as a system of connections stationary in time, but dynamic features of brain connectivity can provide useful information, both on physiology and pathological conditions of the brain. In this paper, we propose the application of a computational methodology, named Particle Filter (PF), to study non-stationarities in brain connectivity in functional Magnetic Resonance Imaging (fMRI). The PF algorithm estimates time-varying hidden parameters of a first-order linear time-varying Vector Autoregressive model (VAR) through a Sequential Monte Carlo strategy. On simulated time series, the PF approach effectively detected and enabled to follow time-varying hidden parameters and it captured causal relationships among signals. The method was also applied to real fMRI data, acquired in presence of periodic tactile or visual stimulations, in different sessions. On these data, the PF estimates were consistent with current knowledge on brain functioning. Most importantly, the approach enabled to detect statistically significant modulations in the cause-effect relationship between brain areas, which correlated with the underlying visual stimulation pattern presented during the acquisition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...