Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8289, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594349

RESUMO

This paper is focused on the diagnostics of multicopter UAV propulsion system, in which the temporary transient states occur during operation in faulty conditions (eg. not all motor phases working properly). As a diagnostic sensor, the piezo strip has been used, which is very sensitive to any vibrations of the multi-rotor frame. The paper concerns the precise location of the sensor for more effective monitoring of the propulsion system state. For this purpose, a nonlinear analysis of the vibration times series was carefully presented. The obtained non-linear time series were studied with the recurrence analysis in short time windows, which were sensitive to changes in Unmanned Aerial Vehicle motor speeds. The tests were carried out with different percentage of the pulse width modulation signal used for the operation of the brushless motor and for different locations of the piezosensor (side and top planes of the multicopter arm). In the article, it was shown that the side location of the piezosensor is more sensitive to changes in the Unmanned Aerial Vehicle propulsion system, which was studied with the Principal Component Analysis method applied for four main recurrence quantifications. The research presented proves the possibility of using nonlinear recurrence analysis for propulsion system diagnostics and helps to determine the optimal sensor location for more effective health monitoring of multicopter motor.

2.
Sensors (Basel) ; 24(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38475172

RESUMO

This study explores the kinematic model of the popular RHex hexapod robots which have garnered considerable interest for their locomotion capabilities. We study the influence of tripod trajectory parameters on the RHex robot's movement, aiming to craft a precise kinematic model that enhances walking mechanisms. This model serves as a cornerstone for refining robot control strategies, enabling tailored performance enhancements or specific motion patterns. Validation conducted on a bespoke test bed confirms the model's efficacy in predicting spatial movements, albeit with minor deviations due to motor load variations and control system dynamics. In particular, the derived kinematic framework offers valuable insights for advancing control logic, particularly navigating in flat terrains, thereby broadening the RHex robot's application spectrum.

3.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850613

RESUMO

Autonomous take-off and landing on a moving landing pad are extraordinarily complex and challenging functionalities of modern UAVs, especially if they must be performed in windy environments. The article presents research focused on achieving such functionalities for two kinds of UAVs, i.e., a tethered multicopter and VTOL. Both vehicles are supported by a landing pad navigation station, which communicates with their ROS-based onboard computer. The computer integrates navigational data from the UAV and the landing pad navigational station through the utilization of an extended Kalman filter, which is a typical approach in such applications. The novelty of the presented system is extending navigational data with data from the ultra wide band (UWB) system, and this makes it possible to achieve a landing accuracy of about 1 m. In the research, landing tests were carried out in real conditions on a lake for both UAVs. In the tests, a special mobile landing pad was built and based on a barge. The results show that the expected accuracy of 1 m is indeed achieved, and both UAVs are ready to be tested in real conditions on a ferry.

4.
Sensors (Basel) ; 23(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36679844

RESUMO

Failure detection of Unmanned Aerial Vehicle (UAV) motors and propulsion systems is the most important step in the implementation of active fault-tolerant control systems. This will increase the reliability of unmanned systems and increase the level of safety, especially in civil and commercial applications. The following paper presents a method of motor failure detection in the multirotor UAV using piezo bars. The results of a real flight, in which the failure of the propulsion system caused the crash of a hybrid VTOL UAV, were presented and analyzed. The conclusions drawn from this flight led to the development of a lightweight, simple and reliable sensor that can detect a failure of the UAV propulsion system. The article presents the outcomes of laboratory tests concerning measurements made with a piezo sensor. An extensive analysis of the obtained results of vibrations recorded on a flying platform arm with a propulsion system is presented, and a methodology for using this type of data to detect failures is proposed. The article presents the possibility of using a piezoelectric sensor to record vibrations on the basis of which it is possible to detect a failure of the UAV propulsion system.


Assuntos
Esportes , Reprodutibilidade dos Testes , Coleta de Dados , Dispositivos Aéreos não Tripulados , Vibração
5.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501781

RESUMO

The objects and events detection tasks are being performed progressively often by robotic systems like unmanned aerial vehicles (UAV) or unmanned surface vehicles (USV). Autonomous operations and intelligent sensing are becoming standard in numerous scenarios such as supervision or even search and rescue (SAR) missions. The low cost of autonomous vehicles, vision sensors and portable computers allows the incorporation of the deep learning, mainly convolutional neural networks (CNN) in these solutions. Many systems meant for custom purposes rely on insufficient training datasets, what may cause a decrease of effectiveness. Moreover, the system's accuracy is usually dependent on the returned bounding boxes highlighting the supposed targets. In desktop applications, precise localisation might not be particularly relevant; however, in real situations, with low visibility and non-optimal camera orientation, it becomes crucial. One of the solutions for dataset enhancement is its augmentation. The presented work is an attempt to evaluate the influence of the training images augmentation on the detection parameters important for the effectiveness of neural networks in the context of object detection. In this research, network appraisal relies on the detection confidence and bounding box prediction accuracy (IoU). All the applied image modifications were simple pattern and colour alterations. The obtained results imply that there is a measurable impact of the augmentation process on the localisation accuracy. It was concluded that a positive or negative influence is related to the complexity and variability of the objects classes.


Assuntos
Redes Neurais de Computação
6.
Sensors (Basel) ; 22(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897978

RESUMO

Precise position tracking plays a key role in formation flights of UAVs (unmanned aerial vehicles) or other applications based on the idea of the leader-following scheme. It decides on the integrity of a formation or increasing the position error when a UAV follows the desired flight path. This is especially difficult in the case of nonholonomic vehicles having limited possibilities of making turns, causing a lack of stability. An asymmetrical artificial potential field (AAPF) is the way to achieve the stability of position tracking by nonholonomic UAVs, but it is only a nonlinear proportional relation to feedback given by a tracking error. Therefore, there can still be a steady-state error or error overshoots. Combining an AAPF with integral and derivative terms can improve the response of control by damping overshoots and minimizing the steady-state error. Such a combination results in a regulator whose properties allow defining it as nonlinear PID. Numerical simulation confirms that integral and derivative terms together with an AAPF create a control loop that can minimize overshoots of the tracking error and the steady-state error and satisfy conditions of asymptotical stability.

7.
Sensors (Basel) ; 21(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833571

RESUMO

The ability of autonomous flight with obstacle avoidance should be a fundamental feature of all modern unmanned aerial vehicles (UAVs). The complexity and difficulty of such a task, however, significantly increase in cases combining moving obstacles and nonholonomic UAVs. Additionally, since they assume the symmetrical distribution of repulsive forces around obstacles, traditional repulsive potential fields are not well suited for nonholonomic vehicles. The limited maneuverability of these types of UAVs, including fixed-wing aircraft, requires consideration not only of their relative position, but also their speed as well as the direction in which the obstacles are moving. To address this issue, the following work presents a novel multidimensional repulsive potential field dedicated to nonholonomic UAVs. This field generates forces that repulse the UAV not from the obstacle's geometrical center, but from areas immediately behind and in front of it located along a line defined by the obstacle's velocity vector. The strength of the repulsive force depends on the UAV's distance to the line representing the obstacle's movement direction, distance to the obstacle along that line, and the relative speed between the UAV and the obstacle projected to the line, making the proposed repulsive potential field multidimensional. Numerical simulations presented within the paper prove the effectiveness of the proposed novel repulsive potential field in controlling the flight of nonholonomic UAVs.

8.
Sensors (Basel) ; 21(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34283096

RESUMO

The following paper presents a method for the use of a virtual electric dipole potential field to control a leader-follower formation of autonomous Unmanned Aerial Vehicles (UAVs). The proposed control algorithm uses a virtual electric dipole potential field to determine the desired heading for a UAV follower. This method's greatest advantage is the ability to rapidly change the potential field function depending on the position of the independent leader. Another advantage is that it ensures formation flight safety regardless of the positions of the initial leader or follower. Moreover, it is also possible to generate additional potential fields which guarantee obstacle and vehicle collision avoidance. The considered control system can easily be adapted to vehicles with different dynamics without the need to retune heading control channel gains and parameters. The paper closely describes and presents in detail the synthesis of the control algorithm based on vector fields obtained using scalar virtual electric dipole potential fields. The proposed control system was tested and its operation was verified through simulations. Generated potential fields as well as leader-follower flight parameters have been presented and thoroughly discussed within the paper. The obtained research results validate the effectiveness of this formation flight control method as well as prove that the described algorithm improves flight formation organization and helps ensure collision-free conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...