Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(2)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672169

RESUMO

The term moonlighting proteins refers to those proteins that present alternative functions performed by a single polypeptide chain acquired throughout evolution (called canonical and moonlighting, respectively). Over 78% of moonlighting proteins are involved in human diseases, 48% are targeted by current drugs, and over 25% of them are involved in the virulence of pathogenic microorganisms. These facts encouraged us to study the link between the functions of moonlighting proteins and disease. We found a large number of moonlighting functions activated by pathological conditions that are highly involved in disease development and progression. The factors that activate some moonlighting functions take place only in pathological conditions, such as specific cellular translocations or changes in protein structure. Some moonlighting functions are involved in disease promotion while others are involved in curbing it. The disease-impairing moonlighting functions attempt to restore the homeostasis, or to reduce the damage linked to the imbalance caused by the disease. The disease-promoting moonlighting functions primarily involve the immune system, mesenchyme cross-talk, or excessive tissue proliferation. We often find moonlighting functions linked to the canonical function in a pathological context. Moonlighting functions are especially coordinated in inflammation and cancer. Wound healing and epithelial to mesenchymal transition are very representative. They involve multiple moonlighting proteins with a different role in each phase of the process, contributing to the current-phase phenotype or promoting a phase switch, mitigating the damage or intensifying the remodeling. All of this implies a new level of complexity in the study of pathology genesis, progression, and treatment. The specific protein function involved in a patient's progress or that is affected by a drug must be elucidated for the correct treatment of diseases.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas , Humanos , Proteínas/metabolismo , Homeostase , Movimento Celular , Progressão da Doença
2.
Microorganisms ; 9(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203698

RESUMO

Moonlighting and multitasking proteins refer to proteins with two or more functions performed by a single polypeptide chain. An amazing example of the Gain of Function (GoF) phenomenon of these proteins is that 25% of the moonlighting functions of our Multitasking Proteins Database (MultitaskProtDB-II) are related to pathogen virulence activity. Moreover, they usually have a canonical function belonging to highly conserved ancestral key functions, and their moonlighting functions are often involved in inducing extracellular matrix (ECM) protein remodeling. There are three main questions in the context of moonlighting proteins in pathogen virulence: (A) Why are a high percentage of pathogen moonlighting proteins involved in virulence? (B) Why do most of the canonical functions of these moonlighting proteins belong to primary metabolism? Moreover, why are they common in many pathogen species? (C) How are these different protein sequences and structures able to bind the same set of host ECM protein targets, mainly plasminogen (PLG), and colonize host tissues? By means of an extensive bioinformatics analysis, we suggest answers and approaches to these questions. There are three main ideas derived from the work: first, moonlighting proteins are not good candidates for vaccines. Second, several motifs that might be important in the adhesion to the ECM were identified. Third, an overrepresentation of GO codes related with virulence in moonlighting proteins were seen.

3.
Protein J ; 37(5): 444-453, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30123928

RESUMO

Multifunctionality or multitasking is the capability of some proteins to execute two or more biochemical functions. The objective of this work is to explore the relationship between multifunctional proteins, human diseases and drug targeting. The analysis of the proportion of multitasking proteins from the MultitaskProtDB-II database shows that 78% of the proteins analyzed are involved in human diseases. This percentage is much higher than the 17.9% found in human proteins in general. A similar analysis using drug target databases shows that 48% of these analyzed human multitasking proteins are targets of current drugs, while only 9.8% of the human proteins present in UniProt are specified as drug targets. In almost 50% of these proteins, both the canonical and moonlighting functions are related to the molecular basis of the disease. A procedure to identify multifunctional proteins from disease databases and a method to structurally map the canonical and moonlighting functions of the protein have also been proposed here. Both of the previous percentages suggest that multitasking is not a rare phenomenon in proteins causing human diseases, and that their detailed study might explain some collateral drug effects.


Assuntos
Bases de Dados de Proteínas , Preparações Farmacêuticas/química , Proteínas/química , Software , Humanos
4.
Pathog Dis ; 76(5)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718264

RESUMO

Moonlighting or multitasking proteins refer to those proteins with two or more functions performed by a single polypeptide chain. Proteins that belong to key ancestral functions and metabolic pathways such as primary metabolism typically exhibit moonlighting phenomenon. We have collected 698 moonlighting proteins in MultitaskProtDB-II database. A survey shows that 25% of the proteins of the database correspond to moonlighting functions related to pathogens virulence activity. Why is the canonical function of these virulence proteins mainly from ancestral key biological functions (especially of primary metabolism)? Our hypothesis is that these proteins present a high conservation between the pathogen protein and the host counterparts. Therefore, the host immune system will not elicit protective antibodies against pathogen proteins. The fact of sharing epitopes with host proteins (known as epitope mimicry) might be the cause of autoimmune diseases. Although many pathogen proteins can be antigenic, only a few of them would elicit a protective immune response. This would also explain the lack of successful vaccines based in these conserved moonlighting proteins.


Assuntos
Interações Hospedeiro-Patógeno , Metabolismo , Fatores de Virulência/metabolismo , Bases de Dados Factuais , Evasão da Resposta Imune , Fatores de Virulência/imunologia
5.
Nucleic Acids Res ; 46(D1): D645-D648, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29136215

RESUMO

Multitasking, or moonlighting, is the capability of some proteins to execute two or more biological functions. MultitaskProtDB-II is a database of multifunctional proteins that has been updated. In the previous version, the information contained was: NCBI and UniProt accession numbers, canonical and additional biological functions, organism, monomeric/oligomeric states, PDB codes and bibliographic references. In the present update, the number of entries has been increased from 288 to 694 moonlighting proteins. MultitaskProtDB-II is continually being curated and updated. The new database also contains the following information: GO descriptors for the canonical and moonlighting functions, three-dimensional structure (for those proteins lacking PDB structure, a model was made using Itasser and Phyre), the involvement of the proteins in human diseases (78% of human moonlighting proteins) and whether the protein is a target of a current drug (48% of human moonlighting proteins). These numbers highlight the importance of these proteins for the analysis and explanation of human diseases and target-directed drug design. Moreover, 25% of the proteins of the database are involved in virulence of pathogenic microorganisms, largely in the mechanism of adhesion to the host. This highlights their importance for the mechanism of microorganism infection and vaccine design. MultitaskProtDB-II is available at http://wallace.uab.es/multitaskII.


Assuntos
Bases de Dados de Proteínas , Humanos , Internet , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Interface Usuário-Computador
6.
Artigo em Inglês | MEDLINE | ID: mdl-26157797

RESUMO

Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyze and describe several approaches that use sequences, structures, interactomics, and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are (a) remote homology searches using Psi-Blast, (b) detection of functional motifs and domains, (c) analysis of data from protein-protein interaction databases (PPIs), (d) match the query protein sequence to 3D databases (i.e., algorithms as PISITE), and (e) mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs) has the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations - it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/), previously published by our group, has been used as a benchmark for the all of the analyses.

7.
Biochem Soc Trans ; 42(6): 1692-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399591

RESUMO

Protein multitasking or moonlighting is the capability of certain proteins to execute two or more unique biological functions. This ability to perform moonlighting functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Usually, moonlighting proteins are revealed experimentally by serendipity, and the proteins described probably represent just the tip of the iceberg. It would be helpful if bioinformatics could predict protein multifunctionality, especially because of the large amounts of sequences coming from genome projects. In the present article, we describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. The sequence analysis has been performed: (i) by remote homology searches using PSI-BLAST, (ii) by the detection of functional motifs, and (iii) by the co-evolutionary relationship between amino acids. Programs designed to identify functional motifs/domains are basically oriented to detect the main function, but usually fail in the detection of secondary ones. Remote homology searches such as PSI-BLAST seem to be more versatile in this task, and it is a good complement for the information obtained from protein-protein interaction (PPI) databases. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can be used only in very restricted situations, but can suggest how the evolutionary process of the acquisition of the second function took place.


Assuntos
Biologia Computacional , Proteínas/fisiologia , Mutação , Conformação Proteica , Proteínas/química , Proteínas/genética , Homologia de Sequência de Aminoácidos
8.
Nucleic Acids Res ; 42(Database issue): D517-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24253302

RESUMO

We have compiled MultitaskProtDB, available online at http://wallace.uab.es/multitask, to provide a repository where the many multitasking proteins found in the literature can be stored. Multitasking or moonlighting is the capability of some proteins to execute two or more biological functions. Usually, multitasking proteins are experimentally revealed by serendipity. This ability of proteins to perform multitasking functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Even so, the study of this phenomenon is complex because, among other things, there is no database of moonlighting proteins. The existence of such a tool facilitates the collection and dissemination of these important data. This work reports the database, MultitaskProtDB, which is designed as a friendly user web page containing >288 multitasking proteins with their NCBI and UniProt accession numbers, canonical and additional biological functions, monomeric/oligomeric states, PDB codes when available and bibliographic references. This database also serves to gain insight into some characteristics of multitasking proteins such as frequencies of the different pairs of functions, phylogenetic conservation and so forth.


Assuntos
Bases de Dados de Proteínas , Proteínas/fisiologia , Enzimas/fisiologia , Internet , Multimerização Proteica
9.
Mol Biosyst ; 7(8): 2379-82, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21677976

RESUMO

One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or "moonlighting", proteins. By and large, moonlighting proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among proteins and pathways. In principle, protein-protein interaction (PPI) databases should contain information on moonlighting proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting proteins. In the present work we check whether well-established moonlighting proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.


Assuntos
Bases de Dados de Proteínas , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteínas/classificação , Proteômica/métodos , Proteínas/química , Proteínas/metabolismo
10.
BMC Syst Biol ; 5: 49, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21486441

RESUMO

BACKGROUND: Many complex systems can be represented and analysed as networks. The recent availability of large-scale datasets, has made it possible to elucidate some of the organisational principles and rules that govern their function, robustness and evolution. However, one of the main limitations in using protein-protein interactions for function prediction is the availability of interaction data, especially for Mollicutes. If we could harness predicted interactions, such as those from a Protein-Protein Association Networks (PPAN), combining several protein-protein network function-inference methods with semantic similarity calculations, the use of protein-protein interactions for functional inference in this species would become more potentially useful. RESULTS: In this work we show that using PPAN data combined with other approximations, such as functional module detection, orthology exploitation methods and Gene Ontology (GO)-based information measures helps to predict protein function in Mycoplasma genitalium. CONCLUSIONS: To our knowledge, the proposed method is the first that combines functional module detection among species, exploiting an orthology procedure and using information theory-based GO semantic similarity in PPAN of the Mycoplasma species. The results of an evaluation show a higher recall than previously reported methods that focused on only one organism network.


Assuntos
Anotação de Sequência Molecular/métodos , Mycoplasma genitalium/genética , Algoritmos , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas
11.
BMC Struct Biol ; 10: 37, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20969768

RESUMO

BACKGROUND: Is it possible to identify what the best solution of a docking program is? The usual answer to this question is the highest score solution, but interactions between proteins are dynamic processes, and many times the interaction regions are wide enough to permit protein-protein interactions with different orientations and/or interaction energies. In some cases, as in a multimeric protein complex, several interaction regions are possible among the monomers. These dynamic processes involve interactions with surface displacements between the proteins to finally achieve the functional configuration of the protein complex. Consequently, there is not a static and single solution for the interaction between proteins, but there are several important configurations that also have to be analyzed. RESULTS: To extract those representative solutions from the docking output datafile, we have developed an unsupervised and automatic clustering application, named DockAnalyse. This application is based on the already existing DBscan clustering method, which searches for continuities among the clusters generated by the docking output data representation. The DBscan clustering method is very robust and, moreover, solves some of the inconsistency problems of the classical clustering methods like, for example, the treatment of outliers and the dependence of the previously defined number of clusters. CONCLUSIONS: DockAnalyse makes the interpretation of the docking solutions through graphical and visual representations easier by guiding the user to find the representative solutions. We have applied our new approach to analyze several protein interactions and model the dynamic protein interaction behavior of a protein complex. DockAnalyse might also be used to describe interaction regions between proteins and, therefore, guide future flexible dockings. The application (implemented in the R package) is accessible.


Assuntos
Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Software
12.
PLoS One ; 2(6): e512, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17551592

RESUMO

The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity with human proteins should be very good vaccine candidates, and the other way around.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Biologia Computacional , Epitopos de Linfócito B/imunologia , Proteínas/imunologia , Proteoma/imunologia , Sequência de Aminoácidos , Formação de Anticorpos , Antígenos de Bactérias/genética , Bactérias/genética , Bactérias/imunologia , Vacinas Bacterianas/genética , Epitopos de Linfócito B/genética , Humanos , Dados de Sequência Molecular , Proteínas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...