Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e20141, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809693

RESUMO

Hepatitis C is still a serious liver case of health. Up to now the development of anti-Hepatitis C Virus (HCV) drugs is challenging, especially the development of natural material compounds as anti-HCV. In the present study, we evaluated the probability of α-mangostin, piperine, and ß-sitosterol as anti-HCV with the in silico and in vitro approaches. Molecular docking was performed between nonstructural protein 5B (NS5B, PDB ID 3FQL) with α-mangostin, piperine, and ß-sitosterol by Autodock Tools® and BIOVIA Discovery Studio®. Subsequently, molecular dynamics simulations were conducted for 200 ns, evaluating the dynamic interaction between the ligands and the viral protein NS5B. Furthermore, compound characterization at the hepatocarcinoma cell line was employed. α-Mangostin with NS5B complex demonstrated the most negative binding free energy value based on MM-PBSA calculation with a value of -9.13 kcal/mol. In vitro test showed that IC50 of α -mangostin was 2.70 ± 0.92 µM, IC50 of piperine was 52.18 ± 3.21 µM, IC50 of ß-sitosterol was >100 µM. α-Mangostin can serve as a valuable lead compound for further development of the anti-HCV.

2.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555475

RESUMO

Epidermal growth factor receptor (EGFR) resistance to tyrosine kinase inhibitors can cause low survival rates in mutation-positive non-small cell lung cancer patients. It is necessary to predict new mutations in the development of more potent EGFR inhibitors since classical and rare mutations observed were known to affect the effectiveness of the therapy. Therefore, this research aimed to perform alanine mutagenesis scanning on ATP binding site residues without COSMIC data, followed by molecular dynamic simulations to determine their molecular interactions with ATP and erlotinib compared to wild-type complexes. Based on the result, eight mutations were found to cause changes in the binding energy of the ATP analogue to become more negative. These included G779A, Q791A, L792A, R841A, N842A, V843A, I853A, and D855A, which were predicted to enhance the affinity of ATP and reduce the binding ability of inhibitors with the same interaction site. Erlotinib showed more positive energy among G779A, Q791A, I853A, and D855A, due to their weaker binding energy than ATP. These four mutations could be anticipated in the development of the next inhibitor to overcome the incidence of resistance in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Humanos , Trifosfato de Adenosina , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia
3.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164092

RESUMO

Lung cancer has a high prevalence, with a growing number of new cases and mortality every year. Furthermore, the survival rate of patients with non-small-cell lung carcinoma (NSCLC) is still quite low in the majority of cases. Despite the use of conventional therapy such as tyrosine kinase inhibitor for Epidermal Growth Factor Receptor (EGFR), which is highly expressed in most NSCLC cases, there was still no substantial improvement in patient survival. This is due to the drug's ineffectiveness and high rate of resistance among individuals with mutant EGFR. Therefore, the development of new inhibitors is urgently needed. Understanding the EGFR structure, including its kinase domain and other parts of the protein, and its activation mechanism can accelerate the discovery of novel compounds targeting this protein. This study described the structure of the extracellular, transmembrane, and intracellular domains of EGFR. This was carried out along with identifying the binding pose of commercially available inhibitors in the ATP-binding and allosteric sites, thereby clarifying the research gaps that can be filled. The binding mechanism of inhibitors that have been used clinically was also explained, thereby aiding the structure-based development of new drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos
4.
ACS Omega ; 6(42): 28403-28409, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723037

RESUMO

Formaldehyde has been reported to be a potential human carcinogen due to its toxicity. However, formaldehyde releaser substances are still widely used as a preservative in cosmetics. Researchers have developed various methods for determining formaldehyde. One of the problems involved in the standard method is that of obtaining a derivatization agent, especially for routine analysis in the National Agency of Drug and Food, Indonesia. Therefore, this study aimed to develop a new method using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The significant modifications involved optimizations of five series of concentrations of p-toluenesulfonic (PTS) acid in ethanol (acidified ethanol), used as the derivatization agent, and the conditions of time and temperature of the reaction to yield the highest peak area. In addition, sample analysis was also carried out using the 2,4-dinitrophenylhydrazine (DNPH) method with high-performance liquid chromatography (HPLC) to compare the quantification results. The validated method showed intraday and interday precision, an accuracy (% RSD) of less than 3.7%, confidence interval 95.0-105.0%, a limit of detection and quantitation of 0.0099 and 0.0329 µg/mL (for DNPH by HPLC-DAD), 0.0158 and 0.0528 µg/mL (for PTS by SHS-GC-MS), and 1.1287 and 3.7625 µg/mL (for PTS liquid by GC-FID), respectively. These results have met the requirements for a validated analytical method and could be applied for routine analysis.

5.
J Med Chem ; 64(7): 3827-3842, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33764785

RESUMO

In this study, we determined the crystal structure of an engineered human adenosine A2A receptor bound to a partial agonist and compared it to structures cocrystallized with either a full agonist or an antagonist/inverse agonist. The interaction between the partial agonist, belonging to a class of dicyanopyridines, and amino acids in the ligand binding pocket inspired us to develop a small library of derivatives and assess their affinity in radioligand binding studies and potency and intrinsic activity in a functional, label-free, intact cell assay. It appeared that some of the derivatives retained the partial agonist profile, whereas other ligands turned into inverse agonists. We rationalized this remarkable behavior with additional computational docking studies.


Assuntos
Agonistas do Receptor A2 de Adenosina/metabolismo , Aminopiridinas/metabolismo , Pirimidinas/metabolismo , Receptor A2A de Adenosina/metabolismo , Aminopiridinas/síntese química , Animais , Sítios de Ligação , Células CHO , Cricetulus , Cristalografia por Raios X , Agonismo Inverso de Drogas , Agonismo Parcial de Drogas , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Pirimidinas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo
6.
ACS Omega ; 5(32): 20162-20169, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832770

RESUMO

Anthraquinone (AQ) levels in some Indonesian dried tea leaves samples from different plantation areas and their brewed tea samples were determined by gas chromatography-tandem mass spectrometry methods. The mean lower bound, middle bound, and upper bound of AQ levels in 59 dried tea leaves samples were 82.2, 82.8, and 83.4 µg/kg, respectively, while their 95%th percentile values were identical at 190.3 µg/kg (0.1903 mg/kg). In a transfer rate study, the mean and 95%th AQ levels in 30 dried tea leaves samples with AQ level ≥ LOQ (limit of quantification) were 128.6 and 194.5 µg/kg (0.1945 mg/kg), while those of their corresponding brewed tea samples were 2.1 and 3.4 µg/kg, respectively. The mean and 95%th transfer rates of AQ into brewed tea samples were 51.99 and 88.17%. Using these data and taking into account daily tea consumption, calculated cancer potency slope factor, benchmark dose of 10% effect at lower bound 95% confidence interval of AQ, and average body weight, the risk characterization due to exposure to this compound from tea consumption was calculated and stated as incremental lifetime cancer risk (ILCR) and margin of exposure (MOE). The overall results revealed that AQ levels in dried tea leaves up to the highest level found in the samples lead to an ILCR of not more than 10-6 and an MOE of not less than 104 and hence was predicted to give sufficient consumer protection.

7.
Med Res Rev ; 40(2): 683-708, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495942

RESUMO

The function of G protein-coupled receptors (GPCRs) can be modulated by compounds that bind to other sites than the endogenous orthosteric binding site, so-called allosteric sites. Structure elucidation of a number of GPCRs has revealed the presence of a sodium ion bound in a conserved allosteric site. The small molecule amiloride and analogs thereof have been proposed to bind in this same sodium ion site. Hence, this review seeks to summarize and reflect on the current knowledge of allosteric effects by amiloride and its analogs on GPCRs. Amiloride is known to modulate adenosine, adrenergic, dopamine, chemokine, muscarinic, serotonin, gonadotropin-releasing hormone, GABAB , and taste receptors. Amiloride analogs with lipophilic substituents tend to be more potent modulators than amiloride itself. Adenosine, α-adrenergic and dopamine receptors are most strongly modulated by amiloride analogs. In addition, for a few GPCRs, more than one binding site for amiloride has been postulated. Interestingly, the nature of the allosteric effect of amiloride and derivatives varies considerably between GPCRs, with both negative and positive allosteric modulation occurring. Since the sodium ion binding site is strongly conserved among class A GPCRs it is to be expected that amiloride also binds to class A GPCRs not evaluated yet. Investigating this typical amiloride-GPCR interaction further may yield general insight in the allosteric mechanisms of GPCR ligand binding and function, and possibly provide new opportunities for drug discovery.


Assuntos
Amilorida/análogos & derivados , Amilorida/farmacologia , Descoberta de Drogas , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica , Amilorida/química , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...