Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9839, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684724

RESUMO

This study explores the dynamical rotary motion of a charged axisymmetric spinning rigid body (RB) under the effect of a gyrostatic moment (GM). The influence of transverse and invariable body fixed torques (IBFTs), and an electromagnetic force field, is also considered. Euler's equations of motion (EOM) are utilized to derive the regulating system of motion for the problem in a suitable formulation. Due to the lack of torque exerted along the spin axis and the nearly symmetrical nature of the RB, the spin rate is nearly unchanged. Assuming slight angular deviations of the spin axis relative to a fixed direction in space, it is possible to derive approximate analytical solutions (AS) in closed form for the attitude, translational, and rotational movements. These concise solutions that are expressed in complex form are highly effective in analyzing the maneuvers performed by spinning RBs. The study focuses on deriving the AS for various variables including angular velocities, Euler's angles, angular momentum, transverse displacements, transverse velocities, axial displacement, and axial velocity. The graphical simulation of the subsequently obtained solutions is presented to show their precision. Furthermore, the positive impacts that alterations in the body's parameters have on the motion's behavior are presented graphically. The corresponding phase plane curves, highlighting the influence of different values in relation to the electromagnetic force field, the GM, and the IBFTs are drawn to analyze the stability of the body's motion. This study has a significant role in various scientific and engineering disciplines. Its importance lies in its ability to optimize mechanical systems, explain celestial motion, and enhance spacecraft performance.

2.
Sci Rep ; 14(1): 5390, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443505

RESUMO

This paper aims to explore the rotatory spatial motion of an asymmetric rigid body (RB) under constant body-fixed torques and a nonzero first component gyrostatic moment vector (GM). Euler's equations of motion are used to derive a set of dimensionless equations of motion, which are then proposed for the stability analysis of equilibrium points. Specifically, this study develops 3D phase space trajectories for three distinct scenarios; two of them are applied constant torques that are directed on the minor and major axes, while the third one is the action of applied constant torque on the body's middle axis. Novel analytical and simulation results for both scenarios of constant torque applied along the minor and middle axes are provided in the context of separatrix surfaces, equilibrium manifolds, periodic or non-periodic solutions, and periodic solutions' extreme. Concerning the scenario of a directed torque on the major axis, a numerical solution for the problem is presented in addition to a simulation of the graphed results for the angular velocities' trajectories in various regions. Moreover, the influence of GM is examined for each case and a full modeling for the body's stability has been present. The exceptional impact of these results is evident in the development and assessment of systems involving asymmetric RBs, such as satellites and spacecraft. It may serve as a motivating factor to explore different angles within the GM in similar cases, thereby influencing various industries, including engineering and astrophysics applications.

3.
Sci Rep ; 13(1): 21430, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052918

RESUMO

This study examines the motion of a spring pendulum with two degrees-of-freedom (DOF) in a plane as a vibrating system, in which its pivot point is constrained to move along a Lissajous curve. In light of the system's coordinates, the governing equations of motion (EOM) are obtained utilizing the equations of Lagrange's. The novelty of this work is to use the approach of multiple scales (AMS), as a traditional method, to obtain novel approximate solutions (AS) of the EOM with a higher degree of approximation. These solutions have been compared with the numerical ones that have been obtained using the fourth-order Runge-Kutta algorithm (4RKA) to reveal the accuracy of the analytic solutions. According to the requirements of solvability, the emergent resonance cases are grouped and the modulation equations (ME) are established. Therefore, the solutions at the steady-state case are confirmed. The stability/instability regions are inspected using Routh-Hurwitz criteria (RHC), and examined in accordance with the steady-state solutions. The achieved outcomes, resonance responses, and stability areas are demonstrated and graphically displayed, to evaluate the positive effects of different values of the physical parameters on the behavior of the examined system. Investigating zones of stability/instability reveals that the system's behavior is stable for a significant portion of its parameters. A better knowledge of the vibrational movements that are closely related to resonance is crucial in many engineering applications because it enables the avoidance of on-going exposure to potentially harmful occurrences.

4.
Sci Rep ; 13(1): 20288, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985730

RESUMO

Due to the growing concentration in the field of the nonlinear oscillators (NOSs), the present study aims to use the general He's frequency formula (HFF) to examine the analytical representations for particular kinds of strong NOSs. Three real-world examples are demonstrated by a variety of engineering and scientific disciplines. The new approach is evidently simple and requires less computation than the other perturbation techniques used in this field. The new methodology that is termed as the non-perturbative methodology (NPM) refers to this innovatory strategy, which merely transforms the nonlinear ordinary differential equation (ODE) into a linear one. The method yields a new frequency that is equivalent to the linear ODE as well as a new damping term that may be produced. A thorough explanation of the NPM is offered for the reader's convenience. A numerical comparison utilizing the Mathematical Software (MS) is used to verify the theoretical results. The precise numeric and theoretical solutions exhibited excellent consistency. As is commonly recognized, when the restoration forces are in effect, all traditional perturbation procedures employ Taylor expansion to expand these forces and then reduce the complexity of the specified problem. This susceptibility no longer exists in the presence of the non-perturbative solution (NPS). Additionally, with the NPM, which was not achievable with older conventional approaches, one can scrutinize examining the problem's stability. The NPS is therefore a more reliable source when examining approximations of solutions for severe NOSs. In fact, the above two reasons create the novelty of the present approach. The NPS is also readily transferable for additional nonlinear issues, making it a useful tool in the fields of applied science and engineering, especially in the topic of the dynamical systems.

5.
Sci Rep ; 13(1): 11942, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488150

RESUMO

A remarkable example of how to quantitatively explain the nonlinear performance of many phenomena in physics and engineering is the Van der Pol oscillator. Therefore, the current paper examines the stability analysis of the dynamics of ϕ6-Van der Pol oscillator (PHI6) exposed to exterior excitation in light of its motivated applications in science and engineering. The emphasis in many examinations has shifted to time-delayed technology, yet the topic of this study is still quite significant. A non-perturbative technique is employed to obtain some improvement and preparation for the system under examination. This new methodology yields an equivalent linear differential equation to the exciting nonlinear one. Applying a numerical approach, the analytical solution is validated by this approach. This novel approach seems to be impressive and promising and can be employed in various classes of nonlinear dynamical systems. In various graphs, the time histories of the obtained results, their varied zones of stability, and their polar representations are shown for a range of natural frequencies and other influencing factor values. Concerning the approximate solution, in the case of the presence/absence of time delay, the numerical approach shows excellent accuracy. It is found that as damping and natural frequency parameters increase, the solution approaches stability more quickly. Additionally, the phase plane is more positively impacted by the initial amplitude, external force, damping, and natural frequency characteristics than the other parameters. To demonstrate how the initial amplitude, natural frequency, and cubic nonlinear factors directly affect the periodicity of the resulting solution, many polar forms of the corresponding equation have been displayed. Furthermore, the stable configuration of the analogous equation is shown in the absence of the stimulated force.

6.
Sci Rep ; 13(1): 5570, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020045

RESUMO

The stability analysis of a rocking rigid rod is investigated in this paper using a time-delayed square position and velocity. The time delay is an additional safety against the nonlinearly vibrating system under consideration. Because time-delayed technologies have lately been the core of several investigations, the subject of this inquiry is extremely relevant. The Homotopy perturbation method (HPM) is modified to produce a more precise approximate outcome. Therefore, the novelty of the exciting paper arises from the coupling of the time delay and its correlation with the modified HPM. A comparison with the fourth-order Runge-Kutta (RK4) technique is employed to evaluate the precision between the analytical as well as the numerical solutions. The study allows for a comprehensive examination of the recognition of the outcome of the realistic approximation analytical methodology. For different amounts of the physical frequency and time delay factors, the time histories of the found solutions are depicted in various plots. These graphs are discussed in the context of the shown curves according to the relevant parameter values. The organized nonlinear prototype approach is examined by the multiple-time scale method up to the first approximation. The obtained results have periodic behavior and a stable manner. The current study makes it possible to carefully examine the findings arrived at by employing the analytical technique of practicable estimation. Additionally, the time delay performs as extra protection as opposed to the system potential for nonlinear oscillation.

7.
Sci Rep ; 13(1): 6507, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081048

RESUMO

This paper is concerned with a time-delayed controller of a damped nonlinear excited Duffing oscillator (DO). Since time-delayed techniques have recently been the focus of numerous studies, the topic of this investigation is quite contemporary. Therefore, time delays of position and velocity are utilized to reduce the nonlinear oscillation of the model under consideration. A much supplementary precise approximate solution is achieved using an advanced Homotopy perturbation method (HPM). The temporal variation of this solution is graphed for different amounts of the employed factors. The organization of the model is verified through a comparison between the plots of the estimated solution and the numerical one which is obtained utilizing the fourth order Runge-Kutta technique (RK4). The outcomes show that the improved HPM is appropriate for a variety of damped nonlinear oscillators since it minimizes the error of the solution while increasing the validation variety. Furthermore, it presents a potential model that deals with a diversity of nonlinear problems. The multiple scales homotopy technique is used to achieve an estimated formula for the suggested time-delayed structure. The controlling nonlinear algebraic equation for the amplitude oscillation at the steady state is gained. The effectiveness of the proposed controller, the time delays impact, controller gains, and feedback gains have been investigated. The realized outcomes show that the controller performance is influenced by the total of the product of the control and feedback gains, in addition to the time delays in the control loop. The analytical and numerical calculations reveal that for certain amounts of the control and feedback signal improvement, the suggested controller could completely reduce the system vibrations. The obtained outcomes are considered novel, in which the used methods are applied on the DO with time-delay. The increase of the time delay parameter leads to a stable case for the DO, which is in harmony with the influence of this parameter. This drawn curves show that the system reaches a stable fixed point which assert the presented discussion.

8.
Sci Rep ; 12(1): 18916, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344602

RESUMO

This paper studies the shortest time of slowing rotation of a free dynamically asymmetric rigid body (RB), analogous to Euler's case. This body is influenced by a rotatory moment of a tiny control torque with closer coefficients but not equal, a gyrostatic moment (GM) due to the presence of three rotors, and in the presence of a modest slowing viscous friction torque. Therefore, this problem can be regarded as a semi-optimal one. The controlling optimal decelerating law for the rotation of the body is constructed. The trajectories that are quasi-stationary are examined. The obtained new results are displayed to identify the positive impact of the GM. The dimensionless form of the regulating system of motion is obtained. The functions of kinetic energy and angular momentum besides the square module are drawn for various values of the GM's projections on the body's principal axes of inertia. The effect of control torques on the body's motion is investigated in a case of small perturbation, and the achieved results are compared with the unperturbed one. For the case of a lack of GM, the comparison between our results and those of the prior ones reveals a high degree of consistency, in which the deviations between them are examined. As a result, these outcomes generalized those that were acquired in previous studies. The significance of this research stems from its practical applications, particularly in the applications of gyroscopic theory to maintain the stability and determine the orientation of aircraft and undersea vehicles.

9.
Sci Rep ; 12(1): 16942, 2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210360

RESUMO

In this work, the influence of a gyrostatic moment vector (GMV) and the Newtonian field (NF) on the rotatory motion of a restricted rigid body (RB) according to disc case around a fixed point is examined. The basic equation of the body motion is used to get the regulating motion's system as well as the three available independent first integrals. The system's six equations and these integrals were reduced to two equations of a quasi-linear two-degrees-of-freedom autonomous system and one first integral. The disc has been presumed to be quickly rotating around one of the ellipsoid of inertia's main axis. Poincaré's method of small parameter (PMSP) is applied to acquire the periodic solutions of the controlling system of the body's motion. Euler's angles are utilized to characterize the body's configuration at any instant in which it is graphed, as well as the obtained solutions to explore the good action of the body's parameters on its motion. The phase plane graphs of these solutions are presented to examine their stabilities. The relevance of this work may be traced to its wide range of applications in fields as diverse as physics, engineering, and life sciences, including assembly and machine design.


Assuntos
Fenômenos Mecânicos , Rotação
10.
Sci Rep ; 12(1): 12628, 2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35871675

RESUMO

The current work focuses on the motion of a simple pendulum connected to a wheel and a lightweight spring. The fundamental equation of motion is transformed into a complicated nonlinear ordinary differential equation under restricted surroundings. To achieve the approximate regular solution, the combination of the Homotopy perturbation method (HPM) and Laplace transforms is adopted in combination with the nonlinear expanded frequency. In order to verify the achievable solution, the technique of Runge-Kutta of fourth-order (RK4) is employed. The existence of the obtained solutions over the time, as well as their related phase plane plots, are graphed to display the influence of the parameters on the motion behavior. Additionally, the linearized stability analysis is validated to understand the stability in the neighborhood of the fixed points. The phase portraits near the equilibrium points are sketched.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...