Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 39(8): 1710-1723, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31723238

RESUMO

Tumor cells rely on glycolysis to meet their elevated demand for energy. Thereby they produce significant amounts of lactate and protons, which are exported via monocarboxylate transporters (MCTs), supporting the formation of an acidic microenvironment. The present study demonstrates that carbonic anhydrase IX (CAIX), one of the major acid/base regulators in cancer cells, forms a protein complex with MCT1 and MCT4 in tissue samples from human breast cancer patients, but not healthy breast tissue. Formation of this transport metabolon requires binding of CAIX to the Ig1 domain of the MCT1/4 chaperon CD147 and is required for CAIX-mediated facilitation of MCT1/4 activity. Application of an antibody, directed against the CD147-Ig1 domain, displaces CAIX from the transporter and suppresses CAIX-mediated facilitation of proton-coupled lactate transport. In cancer cells, this "metabolon disruption" results in a decrease in lactate transport, reduced glycolysis, and ultimately reduced cell proliferation. Taken together, the study shows that carbonic anhydrases form transport metabolons with acid/base transporters in human tumor tissue and that these interactions can be exploited to interfere with tumor metabolism and proliferation.


Assuntos
Neoplasias da Mama/patologia , Anidrase Carbônica IX/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Simportadores/metabolismo , Basigina/química , Basigina/metabolismo , Humanos , Células MCF-7 , Modelos Moleculares , Domínios Proteicos
2.
J Biol Chem ; 294(2): 593-607, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30446621

RESUMO

Monocarboxylate transporters (MCTs) mediate the proton-coupled exchange of high-energy metabolites, including lactate and pyruvate, between cells and tissues. The transport activity of MCT1, MCT2, and MCT4 can be facilitated by the extracellular carbonic anhydrase IV (CAIV) via a noncatalytic mechanism. Combining physiological measurements in HEK-293 cells and Xenopus oocytes with pulldown experiments, we analyzed the direct interaction between CAIV and the two MCT chaperones basigin (CD147) and embigin (GP70). Our results show that facilitation of MCT transport activity requires direct binding of CAIV to the transporters chaperones. We found that this binding is mediated by the highly conserved His-88 residue in CAIV, which is also the central residue of the enzyme's intramolecular proton shuttle, and a charged amino acid residue in the Ig1 domain of the chaperone. Although the position of the CAIV-binding site in the chaperone was conserved, the amino acid residue itself varied among different species. In human CD147, binding of CAIV was mediated by the negatively charged Glu-73 and in rat CD147 by the positively charged Lys-73. In rat GP70, we identified the positively charged Arg-130 as the binding site. Further analysis of the CAIV-binding site revealed that the His-88 in CAIV can either act as H donor or H acceptor for the hydrogen bond, depending on the charge of the binding residue in the chaperone. Our results suggest that the CAIV-mediated increase in MCT transport activity requires direct binding between CAIV-His-88 and a charged amino acid in the extracellular domain of the transporter's chaperone.


Assuntos
Basigina/metabolismo , Anidrase Carbônica IV/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Mapas de Interação de Proteínas , Sequência de Aminoácidos , Animais , Basigina/química , Células HEK293 , Humanos , Proteínas de Membrana , Modelos Moleculares , Domínios Proteicos , Ratos , Alinhamento de Sequência , Simportadores/metabolismo , Xenopus
3.
Oncotarget ; 9(46): 27940-27957, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29963253

RESUMO

Highly glycolytic tumor cells release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbate extracellular acidification and support the formation of a hostile environment. Transport activity of MCTs can be facilitated by non-catalytic interaction with carbonic anhydrase IX (CAIX), the expression of which has been shown to be upregulated under hypoxia. We have now studied the mechanisms that enable CAIX-mediated facilitation of proton-coupled lactate transport in breast cancer cells and Xenopus oocytes. Our results indicate that the proteoglycan like (PG) domain of CAIX could function as 'proton antenna' to facilitate MCT transport activity. Truncation of the PG domain and application of a PG-binding antibody significantly reduced proton-coupled lactate transport in MCT-expressing oocytes and hypoxic breast cancer cells, respectively. Furthermore, application of the PG-binding antibody reduced proliferation and migration of hypoxic cancer cells, suggesting that facilitation of proton-coupled lactate flux by the CAIX PG domain contributes to cancer cell survival under hypoxic conditions.

4.
Elife ; 72018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29809145

RESUMO

Many tumor cells produce vast amounts of lactate and acid, which have to be removed from the cell to prevent intracellular lactacidosis and suffocation of metabolism. In the present study, we show that proton-driven lactate flux is enhanced by the intracellular carbonic anhydrase CAII, which is colocalized with the monocarboxylate transporter MCT1 in MCF-7 breast cancer cells. Co-expression of MCTs with various CAII mutants in Xenopus oocytes demonstrated that CAII facilitates MCT transport activity in a process involving CAII-Glu69 and CAII-Asp72, which could function as surface proton antennae for the enzyme. CAII-Glu69 and CAII-Asp72 seem to mediate proton transfer between enzyme and transporter, but CAII-His64, the central residue of the enzyme's intramolecular proton shuttle, is not involved in proton shuttling between the two proteins. Instead, this residue mediates binding between MCT and CAII. Taken together, the results suggest that CAII features a moiety that exclusively mediates proton exchange with the MCT to facilitate transport activity.


Assuntos
Neoplasias da Mama/metabolismo , Anidrase Carbônica II/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Xenopus laevis/metabolismo , Animais , Transporte Biológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Anidrase Carbônica II/química , Anidrase Carbônica II/genética , Feminino , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Oócitos/citologia , Oócitos/metabolismo , Conformação Proteica , Prótons , Propriedades de Superfície , Simportadores/genética , Células Tumorais Cultivadas
5.
Math Biosci Eng ; 16(1): 320-337, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30674122

RESUMO

The most aggressive tumor cells, which often reside in a hypoxic environment, can release vast amounts of lactate and protons via monocarboxylate transporters (MCTs). This additional proton efflux exacerbates extracellular acidification and supports the formation of a hostile environment. In the present study we propose a novel, data-based model for this proton-coupled lactate transport in cancer cells. The mathematical settings involve systems coupling nonlinear ordinary and stochastic differential equations describing the dynamics of intra- and extracellular proton and lactate concentrations. The data involve time series of intracellular proton concentrations of normoxic and hypoxic MCF-7 breast cancer cells. The good agreement of our final model with the data suggests the existence of proton pools near the cell membrane, which can be controlled by intracellular and extracellular carbonic anhydrases to drive proton-coupled lactate transport across the plasma membrane of hypoxic cancer cells.


Assuntos
Anidrases Carbônicas/metabolismo , Lactatos/metabolismo , Neoplasias/metabolismo , Transporte Biológico , Simulação por Computador , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Modelos Teóricos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Prótons , Simportadores/metabolismo
6.
J Enzyme Inhib Med Chem ; 31(sup4): 38-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557419

RESUMO

Human carbonic anhydrase IX (CA IX) is overexpressed in the most aggressive and invasive tumors. Therefore, CA IX has become the promising antitumor drug target. Three inhibitors have been shown to selectively and with picomolar affinity inhibit human recombinant CA IX. Their inhibitory potencies were determined for the CA IX, CA II, CA IV and CA XII in Xenopus oocytes and MDA-MB-231 cancer cells. The inhibition IC50 value of microelectrode-monitored intracellular and extracellular acidification reached 15 nM for CA IX, but with no effect on CA II expressed in Xenopus oocytes. Results were confirmed by mass spectrometric gas analysis of lysed oocytes, when an inhibitory effect on CA IX catalytic activity was found after the injection of 1 nM VD11-4-2. Moreover, VD11-4-2 inhibited CA activity in MDA-MB-231 cancer cells at nanomolar concentrations. This combination of high selectivity and potency renders VD11-4-2, an auspicious therapeutic drug for target-specific tumor therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Oócitos/enzimologia , Xenopus laevis , Animais , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
7.
FEBS J ; 283(1): 191-200, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26470855

RESUMO

Most carbonic anhydrases catalyse the reversible conversion of carbon dioxide to protons and bicarbonate, either as soluble cytosolic enzymes, in or at intracellular organelles, or at the extracellular face of the cell membrane as membrane-anchored proteins. Carbonic anhydrase isoform IX (CA IX), a membrane-bound enzyme with catalytic activity at the extracellular membrane surface, has come to prominence in recent years because of its association with hypoxic tissue, particularly tumours, often indicating poor prognosis. We have evaluated the catalytic activity of CA IX heterologously expressed in Xenopus laevis oocytes by measuring the amplitude and rate of cytosolic pH changes as well as pH changes at the outer membrane surface (pHs ) during addition and removal of 5% CO2 /25 mm HCO3-, and by mass spectrometry. Our results indicate both extracellular and intracellular catalytic activity of CA IX. Reduced rates of CO2 -dependent intracellular pH changes after knockdown of CA IX confirmed these findings in two breast cancer cell lines: MCF-7 and MDA-MB-231. Our results demonstrate a new function of CA IX that may be important in the search for therapeutic cancer drugs targeting CA IX.


Assuntos
Antígenos de Neoplasias/metabolismo , Biocatálise , Anidrases Carbônicas/metabolismo , Espaço Extracelular/enzimologia , Espaço Intracelular/enzimologia , Animais , Bicarbonatos/química , Dióxido de Carbono/química , Anidrase Carbônica IX , Linhagem Celular Tumoral , Etoxzolamida/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/metabolismo , Células MCF-7 , Oócitos/citologia , Oócitos/enzimologia , Xenopus laevis
8.
Sci Rep ; 5: 13605, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337752

RESUMO

The most aggressive tumour cells, which often reside in hypoxic environments, rely on glycolysis for energy production. Thereby they release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbates extracellular acidification and supports the formation of a hostile environment. We have studied the mechanisms of regulated lactate transport in MCF-7 human breast cancer cells. Under hypoxia, expression of MCT1 and MCT4 remained unchanged, while expression of carbonic anhydrase IX (CAIX) was greatly enhanced. Our results show that CAIX augments MCT1 transport activity by a non-catalytic interaction. Mutation studies in Xenopus oocytes indicate that CAIX, via its intramolecular H(+)-shuttle His200, functions as a "proton-collecting/distributing antenna" to facilitate rapid lactate flux via MCT1. Knockdown of CAIX significantly reduced proliferation of cancer cells, suggesting that rapid efflux of lactate and H(+), as enhanced by CAIX, contributes to cancer cell survival under hypoxic conditions.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/metabolismo , Anidrases Carbônicas/metabolismo , Metabolismo Energético , Ácido Láctico/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Neoplasias da Mama/patologia , Anidrase Carbônica IX , Catálise , Hipóxia Celular , Sobrevivência Celular , Ativação Enzimática , Humanos , Células MCF-7 , Taxa de Depuração Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...