Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(15): 4887-4902, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306708

RESUMO

Variation exists in milk protein concentration of dairy cows of the same breed that are fed and managed in the same environment, and little information was available on this variation which might be attributed to differences in rumen microbial composition as well as their fermentation metabolites. This study is aimed at investigating the difference in the composition and functions of rumen microbiota as well as fermentation metabolites in Holstein cows with high and low milk protein concentrations. In this study, 20 lactating Holstein cows on the same diet were divided into two groups (10 cows each), high degree of milk protein group (HD), and low degree of milk protein (LD) concentrations based on previous milk composition history. Rumen content samples were obtained to explore the rumen fermentation parameters and rumen microbial composition. Shotgun metagenomics sequencing was employed to investigate the rumen microbial composition and sequences were assembled via the metagenomics binning technique. Metagenomics revealed that 6 Archaea genera, 5 Bacteria genera, 7 Eukaryota genera, and 7 virus genera differed significantly between the HD and LD group. The analysis of metagenome-assembled genomes (MAGs) showed that 2 genera (g__Eubacterium_H and g__Dialister) were significantly enriched (P < 0.05, linear discriminant analysis (LDA) > 2) in the HD group. However, the LD group recorded an increased abundance (P < 0.05, LDA > 2) of 8 genera (g__CAG-603, g__UBA2922, g__Ga6A1, g__RUG13091, g__Bradyrhizobium, g__Sediminibacterium, g__UBA6382, and g__Succinivibrio) when compared to the HD group. Furthermore, investigation of the KEGG genes revealed an upregulation in a higher number of genes associated with nitrogen metabolism and lysine biosynthesis pathways in the HD group as compared to the LD group. Therefore, the high milk protein concentration in the HD group could be explained by an increased ammonia synthesis by ruminal microbes which were converted to microbial amino acids and microbial protein (MCP) in presence of an increased energy source made possible by higher activities of carbohydrate-active enzymes (CAZymes). This MCP gets absorbed in the small intestine as amino acids and might be utilized for the synthesis of milk protein. KEY POINTS: • Rumen microbiota and their functions differed between cows with high milk protein % and those with low milk protein %. • The rumen microbiome of cows with high milk protein recorded a higher number of enriched genes linked to the nitrogen metabolism pathway and lysine biosynthesis pathway. • The activities of carbohydrate-active enzymes were found to be higher in the rumen of cows with high milk protein %.


Assuntos
Microbiota , Proteínas do Leite , Feminino , Bovinos , Animais , Proteínas do Leite/metabolismo , Lactação , Rúmen/microbiologia , Metagenômica , Lisina/metabolismo , Dieta/veterinária , Carboidratos , Nitrogênio/metabolismo , Fermentação , Ração Animal/análise
2.
Appl Microbiol Biotechnol ; 106(22): 7627-7642, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36264306

RESUMO

The study was conducted to evaluate the rumen microbiota as well as the milk composition and milk component yields of Holstein cows supplemented with fermented soybean meal (FSBM). Eighteen Holstein cows in their 2nd parity with 54.38 ± 11.12 SD days in milking (DIM) were divided into two dietary groups (CON and TRT) of nine cows per group. The cows in the TRT group received 300 g of FSBM per cow per day in addition to the conventional diet, while each cow in the CON group was supplemented with 350 g of soybean meal (SBM) in their diet daily throughout the 28-day feeding trial. Rumen bacterial composition was detected via 16S rRNA sequencing, and the functional profiles of bacterial communities were predicted. Milk composition, milk yield, as well as rumen fermentation parameters, and serum biochemistry were also recorded. The inclusion of FSBM into the diets of Holstein cows increased the milk urea nitrogen (MUN), milk protein yield, fat corrected milk (FCM), and milk fat yield while the milk somatic cell count (SCC) was decreased. In the rumen, the relative abundances of Fibrobacterota, and Spirochaetota phyla were increased in the TRT group, while the percentage of Proteobacteria was lower. In addition, the supplementation of FSBM to Holstein cows increased the acetate percentage, rumen pH, and acetate to propionate ratio, while the proportion of propionate and propionate % was observed to decrease in the TRT group. The KEGG pathway and functional prediction revealed an upregulation in the functional genes associated with the biosynthesis of amino acids in the TRT group. This enrichment in functional genes resulted in an improved synthesis of several essential amino acids including lysine, methionine, and branch chain amino acids (BCAA) which might be responsible for the increased milk protein yield. Future studies should employ shotgun metagenomics, transcriptomics, and metabolomics technology to investigate the effects of FSBM on other rumen microbiomes and milk protein synthesis in the mammary gland in Holstein cows. KEY POINTS: • The supplementation of fermented soybean meal (FSBM) to Holstein cows modified the proportion of rumen bacteria. • Predicted metabolic pathways and functional genes of rumen bacteria revealed an enrichment in pathway and genes associated with biosynthesis of amino acids in the group fed FSBM. • The cows supplemented with FSBM record an improved rumen fermentation. • Cows supplemented with FSBM recorded an increased yield of milk protein and milk fat.


Assuntos
Alimentos Fermentados , Microbiota , Animais , Bovinos , Feminino , Gravidez , Acetatos/metabolismo , Ração Animal , Dieta/veterinária , Suplementos Nutricionais , Fermentação , Lactação , Metionina/metabolismo , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia , Propionatos/metabolismo , RNA Ribossômico 16S/metabolismo , Rúmen/microbiologia , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...