Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med ; 21(1): 65, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803375

RESUMO

BACKGROUND: After ischemic stroke (IS), peripheral leukocytes infiltrate the damaged region and modulate the response to injury. Peripheral blood cells display distinctive gene expression signatures post-IS and these transcriptional programs reflect changes in immune responses to IS. Dissecting the temporal dynamics of gene expression after IS improves our understanding of immune and clotting responses at the molecular and cellular level that are involved in acute brain injury and may assist with time-targeted, cell-specific therapy. METHODS: The transcriptomic profiles from peripheral monocytes, neutrophils, and whole blood from 38 ischemic stroke patients and 18 controls were analyzed with RNA-seq as a function of time and etiology after stroke. Differential expression analyses were performed at 0-24 h, 24-48 h, and >48 h following stroke. RESULTS: Unique patterns of temporal gene expression and pathways were distinguished for monocytes, neutrophils, and whole blood with enrichment of interleukin signaling pathways for different time points and stroke etiologies. Compared to control subjects, gene expression was generally upregulated in neutrophils and generally downregulated in monocytes over all times for cardioembolic, large vessel, and small vessel strokes. Self-organizing maps identified gene clusters with similar trajectories of gene expression over time for different stroke causes and sample types. Weighted Gene Co-expression Network Analyses identified modules of co-expressed genes that significantly varied with time after stroke and included hub genes of immunoglobulin genes in whole blood. CONCLUSIONS: Altogether, the identified genes and pathways are critical for understanding how the immune and clotting systems change over time after stroke. This study identifies potential time- and cell-specific biomarkers and treatment targets.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Monócitos/metabolismo , Transcriptoma , Neutrófilos/metabolismo , AVC Isquêmico/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
2.
J Neuroinflammation ; 20(1): 13, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691064

RESUMO

BACKGROUND: This study identified early immune gene responses in peripheral blood associated with 90-day ischemic stroke (IS) outcomes. METHODS: Peripheral blood samples from the CLEAR trial IS patients at ≤ 3 h, 5 h, and 24 h after stroke were compared to vascular risk factor matched controls. Whole-transcriptome analyses identified genes and networks associated with 90-day IS outcome assessed using the modified Rankin Scale (mRS) and the NIH Stroke Scale (NIHSS). RESULTS: The expression of 467, 526, and 571 genes measured at ≤ 3, 5 and 24 h after IS, respectively, were associated with poor 90-day mRS outcome (mRS ≥ 3), while 49, 100 and 35 genes at ≤ 3, 5 and 24 h after IS were associated with good mRS 90-day outcome (mRS ≤ 2). Poor outcomes were associated with up-regulated genes or pathways such as IL-6, IL-7, IL-1, STAT3, S100A12, acute phase response, P38/MAPK, FGF, TGFA, MMP9, NF-kB, Toll-like receptor, iNOS, and PI3K/AKT. There were 94 probe sets shared for poor outcomes vs. controls at all three time-points that correlated with 90-day mRS; 13 probe sets were shared for good outcomes vs. controls at all three time-points; and 46 probe sets were shared for poor vs. good outcomes at all three time-points that correlated with 90-day mRS. Weighted Gene Co-Expression Network Analysis (WGCNA) revealed modules significantly associated with 90-day outcome for mRS and NIHSS. Poor outcome modules were enriched with up-regulated neutrophil genes and with down-regulated T cell, B cell and monocyte-specific genes; and good outcome modules were associated with erythroblasts and megakaryocytes. Finally, genes identified by genome-wide association studies (GWAS) to contain significant stroke risk loci or loci associated with stroke outcome including ATP2B, GRK5, SH3PXD2A, CENPQ, HOXC4, HDAC9, BNC2, PTPN11, PIK3CG, CDK6, and PDE4DIP were significantly differentially expressed as a function of stroke outcome in the current study. CONCLUSIONS: This study suggests the immune response after stroke may impact functional outcomes and that some of the early post-stroke gene expression markers associated with outcome could be useful for predicting outcomes and could be targets for improving outcomes.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/complicações , Estudo de Associação Genômica Ampla , Fosfatidilinositol 3-Quinases , Acidente Vascular Cerebral/complicações , Expressão Gênica , Resultado do Tratamento , Isquemia Encefálica/complicações
3.
Tree Physiol ; 43(2): 315-334, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36210755

RESUMO

Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.


Assuntos
Abies , Abies/fisiologia , Transcriptoma , Secas , Epigênese Genética , Florestas , Árvores/genética , Genômica
4.
Brain Hemorrhages ; 3(4): 155-176, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36936603

RESUMO

The peripheral immune system response to Intracerebral Hemorrhage (ICH) may differ with ICH in different brain locations. Thus, we investigated peripheral blood mRNA expression of Deep ICH, Lobar ICH, and vascular risk factor-matched control subjects (n = 59). Deep ICH subjects usually had hypertension. Some Lobar ICH subjects had cerebral amyloid angiopathy (CAA). Genes and gene networks in Deep ICH and Lobar ICH were compared to controls. We found 774 differentially expressed genes (DEGs) and 2 co-expressed gene modules associated with Deep ICH, and 441 DEGs and 5 modules associated with Lobar ICH. Pathway enrichment showed some common immune/inflammatory responses between locations including Autophagy, T Cell Receptor, Inflammasome, and Neuroinflammation Signaling. Th2, Interferon, GP6, and BEX2 Signaling were unique to Deep ICH. Necroptosis Signaling, Protein Ubiquitination, Amyloid Processing, and various RNA Processing terms were unique to Lobar ICH. Finding amyloid processing pathways in blood of Lobar ICH patients suggests peripheral immune cells may participate in processes leading to perivascular/vascular amyloid in CAA vessels and/or are involved in its removal. This study identifies distinct peripheral blood transcriptome architectures in Deep and Lobar ICH, emphasizes the need for considering location in ICH studies/clinical trials, and presents potential location-specific treatment targets.

5.
Sci Rep ; 11(1): 6570, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753837

RESUMO

We aimed to determine if plasma levels of bacterial lipopolysaccharide (LPS) and lipoteichoic acid (LTA) are associated with different causes of stroke and correlate with C-reactive protein (CRP), LPS-binding protein (LBP), and the NIH stroke scale (NIHSS). Ischemic stroke (cardioembolic (CE), large artery atherosclerosis (LAA), small vessel occlusion (SVO)), intracerebral hemorrhage (ICH), transient ischemic attack (TIA) and control subjects were compared (n = 205). Plasma LPS, LTA, CRP, and LBP levels were quantified by ELISA. LPS and CRP levels were elevated in ischemic strokes (CE, LAA, SVO) and ICH compared to controls. LBP levels were elevated in ischemic strokes (CE, LAA) and ICH. LTA levels were increased in SVO stroke compared to TIA but not controls. LPS levels correlated with CRP and LBP levels in stroke and TIA. LPS, LBP and CRP levels positively correlated with the NIHSS and WBC count but negatively correlated with total cholesterol. Plasma LPS and LBP associate with major causes of ischemic stroke and with ICH, whereas LPS/LBP do not associate with TIAs. LTA only associated with SVO stroke. LPS positively correlated with CRP, LBP, and WBC but negatively correlated with cholesterol. Higher LPS levels were associated with worse stroke outcomes.


Assuntos
Infecções Bacterianas/complicações , Infecções Bacterianas/microbiologia , Suscetibilidade a Doenças , Lipopolissacarídeos/efeitos adversos , Acidente Vascular Cerebral/etiologia , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Prognóstico , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/diagnóstico
6.
J Cereb Blood Flow Metab ; 41(6): 1398-1416, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32960689

RESUMO

Understanding cell-specific transcriptome responses following intracerebral hemorrhage (ICH) and ischemic stroke (IS) will improve knowledge of the immune response to brain injury. Transcriptomic profiles of 141 samples from 48 subjects with ICH, different IS etiologies, and vascular risk factor controls were characterized using RNA-seq in isolated neutrophils, monocytes and whole blood. In both IS and ICH, monocyte genes were down-regulated, whereas neutrophil gene expression changes were generally up-regulated. The monocyte down-regulated response to ICH included innate, adaptive immune, dendritic, NK cell and atherosclerosis signaling. Neutrophil responses to ICH included tRNA charging, mitochondrial dysfunction, and ER stress pathways. Common monocyte and neutrophil responses to ICH included interferon signaling, neuroinflammation, death receptor signaling, and NFAT pathways. Suppressed monocyte responses to IS included interferon and dendritic cell maturation signaling, phagosome formation, and IL-15 signaling. Activated neutrophil responses to IS included oxidative phosphorylation, mTOR, BMP, growth factor signaling, and calpain proteases-mediated blood-brain barrier (BBB) dysfunction. Common monocyte and neutrophil responses to IS included JAK1, JAK3, STAT3, and thrombopoietin signaling. Cell-type and cause-specific approaches will assist the search for future IS and ICH biomarkers and treatments.


Assuntos
Hemorragia Cerebral/metabolismo , AVC Isquêmico/metabolismo , Monócitos/metabolismo , Neutrófilos/metabolismo , Transcriptoma , Adulto , Idoso , Hemorragia Cerebral/imunologia , Feminino , Humanos , AVC Isquêmico/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Neutrófilos/imunologia
7.
Transl Stroke Res ; 12(5): 754-777, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33206327

RESUMO

Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) volumes are major determinants of ICH outcomes as is the immune system which plays a significant role in damage and repair. Thus, we performed whole-transcriptome analyses of 18 ICH patients to delineate peripheral blood genes and networks associated with ICH volume, absolute perihematomal edema (aPHE) volume, and relative PHE (aPHE/ICH; rPHE). We found 440, 266, and 391 genes correlated with ICH and aPHE volumes and rPHE, respectively (p < 0.005, partial-correlation > |0.6|). These mainly represented inflammatory pathways including NF-κB, TREM1, and Neuroinflammation Signaling-most activated with larger volumes. Weighted Gene Co-Expression Network Analysis identified seven modules significantly correlated with these measures (p < 0.05). Most modules were enriched in neutrophil, monocyte, erythroblast, and/or T cell-specific genes. Autophagy, apoptosis, HIF-1α, inflammatory and neuroinflammatory response (including Toll-like receptors), cell adhesion (including MMP9), platelet activation, T cell receptor signaling, and mRNA splicing were represented in these modules (FDR p < 0.05). Module hub genes, potential master regulators, were enriched in neutrophil-specific genes in three modules. Hub genes included NCF2, NCF4, STX3, and CSF3R, and involved immune response, autophagy, and neutrophil chemotaxis. One module that correlated negatively with ICH volume correlated positively with rPHE. Its genes and hubs were enriched in T cell-specific genes including hubs LCK and ITK, Src family tyrosine kinases whose modulation improved outcomes and reduced BBB dysfunction following experimental ICH. This study uncovers molecular underpinnings associated with ICH and PHE volumes and pathophysiology in human ICH, where knowledge is scarce. The identified pathways and hub genes may represent novel therapeutic targets.


Assuntos
Edema Encefálico , Doenças Neuroinflamatórias , Autofagia , Edema Encefálico/genética , Hemorragia Cerebral/complicações , Hemorragia Cerebral/genética , Edema , Humanos , Inflamação/genética , RNA Mensageiro , Receptores de Antígenos de Linfócitos T , Tomografia Computadorizada por Raios X
8.
Ann Clin Transl Neurol ; 7(9): 1648-1660, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32785988

RESUMO

OBJECTIVE: Single nucleotide polymorphisms (SNPs) contribute to complex disorders such as ischemic stroke (IS). Since SNPs could affect IS by altering gene expression, we studied the association of common SNPs with changes in mRNA expression (i.e. expression quantitative trait loci; eQTL) in blood after IS. METHODS: RNA and DNA were isolated from 137 patients with acute IS and 138 vascular risk factor controls (VRFC). Gene expression was measured using Affymetrix HTA 2.0 microarrays and SNP variants were assessed with Axiom Biobank Genotyping microarrays. A linear model with a genotype (SNP) × diagnosis (IS and VRFC) interaction term was fit for each SNP-gene pair. RESULTS: The eQTL interaction analysis revealed significant genotype × diagnosis interaction for four SNP-gene pairs as cis-eQTL and 70 SNP-gene pairs as trans-eQTL. Cis-eQTL involved in the inflammatory response to IS included rs56348411 which correlated with neurogranin expression (NRGN), rs78046578 which correlated with CXCL10 expression, rs975903 which correlated with SMAD4 expression, and rs62299879 which correlated with CD38 expression. These four genes are important in regulating inflammatory response and BBB stabilization. SNP rs148791848 was a strong trans-eQTL for anosmin-1 (ANOS1) which is involved in neural cell adhesion and axonal migration and may be important after stroke. INTERPRETATION: This study highlights the contribution of genetic variation to regulating gene expression following IS. Specific inflammatory response to stroke is at least partially influenced by genetic variation. This has implications for progressing toward personalized treatment strategies. Additional research is required to investigate these genes as therapeutic targets.


Assuntos
Regulação da Expressão Gênica/genética , Variação Genética/genética , Inflamação/genética , AVC Isquêmico/genética , Locos de Características Quantitativas/genética , Idoso , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , AVC Isquêmico/imunologia , AVC Isquêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
9.
Genome Med ; 11(1): 65, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653223

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability, developmental disability, and epilepsy are characterized by abnormal brain development that may affect cognition, learning, behavior, and motor skills. High co-occurrence (comorbidity) of NDDs indicates a shared, underlying biological mechanism. The genetic heterogeneity and overlap observed in NDDs make it difficult to identify the genetic causes of specific clinical symptoms, such as seizures. METHODS: We present a computational method, MAGI-S, to discover modules or groups of highly connected genes that together potentially perform a similar biological function. MAGI-S integrates protein-protein interaction and co-expression networks to form modules centered around the selection of a single "seed" gene, yielding modules consisting of genes that are highly co-expressed with the seed gene. We aim to dissect the epilepsy phenotype from a general NDD phenotype by providing MAGI-S with high confidence NDD seed genes with varying degrees of association with epilepsy, and we assess the enrichment of de novo mutation, NDD-associated genes, and relevant biological function of constructed modules. RESULTS: The newly identified modules account for the increased rate of de novo non-synonymous mutations in autism, intellectual disability, developmental disability, and epilepsy, and enrichment of copy number variations (CNVs) in developmental disability. We also observed that modules seeded with genes strongly associated with epilepsy tend to have a higher association with epilepsy phenotypes than modules seeded at other neurodevelopmental disorder genes. Modules seeded with genes strongly associated with epilepsy (e.g., SCN1A, GABRA1, and KCNB1) are significantly associated with synaptic transmission, long-term potentiation, and calcium signaling pathways. On the other hand, modules found with seed genes that are not associated or weakly associated with epilepsy are mostly involved with RNA regulation and chromatin remodeling. CONCLUSIONS: In summary, our method identifies modules enriched with de novo non-synonymous mutations and can capture specific networks that underlie the epilepsy phenotype and display distinct enrichment in relevant biological processes. MAGI-S is available at https://github.com/jchow32/magi-s .


Assuntos
Epilepsia/genética , Redes Reguladoras de Genes , Heterogeneidade Genética , Transtornos do Neurodesenvolvimento/genética , Comorbidade , Bases de Dados Factuais , Epilepsia/epidemiologia , Humanos , Mutação , Transtornos do Neurodesenvolvimento/epidemiologia , Fenótipo , Prognóstico
10.
Bioinformatics ; 35(20): 3923-3930, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30937433

RESUMO

MOTIVATION: Several algorithms have been developed that use high-throughput sequencing technology to characterize structural variations (SVs). Most of the existing approaches focus on detecting relatively simple types of SVs such as insertions, deletions and short inversions. In fact, complex SVs are of crucial importance and several have been associated with genomic disorders. To better understand the contribution of complex SVs to human disease, we need new algorithms to accurately discover and genotype such variants. Additionally, due to similar sequencing signatures, inverted duplications or gene conversion events that include inverted segmental duplications are often characterized as simple inversions, likewise, duplications and gene conversions in direct orientation may be called as simple deletions. Therefore, there is still a need for accurate algorithms to fully characterize complex SVs and thus improve calling accuracy of more simple variants. RESULTS: We developed novel algorithms to accurately characterize tandem, direct and inverted interspersed segmental duplications using short read whole genome sequencing datasets. We integrated these methods to our TARDIS tool, which is now capable of detecting various types of SVs using multiple sequence signatures such as read pair, read depth and split read. We evaluated the prediction performance of our algorithms through several experiments using both simulated and real datasets. In the simulation experiments, using a 30× coverage TARDIS achieved 96% sensitivity with only 4% false discovery rate. For experiments that involve real data, we used two haploid genomes (CHM1 and CHM13) and one human genome (NA12878) from the Illumina Platinum Genomes set. Comparison of our results with orthogonal PacBio call sets from the same genomes revealed higher accuracy for TARDIS than state-of-the-art methods. Furthermore, we showed a surprisingly low false discovery rate of our approach for discovery of tandem, direct and inverted interspersed segmental duplications prediction on CHM1 (<5% for the top 50 predictions). AVAILABILITY AND IMPLEMENTATION: TARDIS source code is available at https://github.com/BilkentCompGen/tardis, and a corresponding Docker image is available at https://hub.docker.com/r/alkanlab/tardis/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Duplicações Segmentares Genômicas , Algoritmos , Genoma Humano , Genômica , Humanos , Software
11.
G3 (Bethesda) ; 9(3): 807-816, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30679248

RESUMO

Ferula assafoetida is a medicinal plant of the Apiaceae family that has traditionally been used for its therapeutic value. Particularly, terpenoid and phenylpropanoid metabolites, major components of the root-derived oleo-gum-resin, exhibit anti-inflammatory and cytotoxic activities, thus offering a resource for potential therapeutic lead compounds. However, genes and enzymes for terpenoid and coumarin-type phenylpropanoid metabolism have thus far remained uncharacterized in F. assafoetida Comparative de novo transcriptome analysis of roots, leaves, stems, and flowers was combined with computational annotation to identify candidate genes with probable roles in terpenoid and coumarin biosynthesis. Gene network analysis showed a high abundance of predicted terpenoid- and phenylpropanoid-metabolic pathway genes in flowers. These findings offer a deeper insight into natural product biosynthesis in F. assafoetida and provide genomic resources for exploiting the medicinal potential of this rare plant.


Assuntos
Cumarínicos/metabolismo , Ferula/genética , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Terpenos/metabolismo , Ferula/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...