Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 33(12): 2720-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23988298

RESUMO

The first-order decay (FOD) model is widely used to estimate landfill gas generation for emissions inventories, life cycle assessments, and regulation. The FOD model has inherent uncertainty due to underlying uncertainty in model parameters and a lack of opportunities to validate it with complete field-scale landfill data sets. The objectives of this paper were to estimate methane generation, fugitive methane emissions, and aggregated collection efficiency for landfills through a mass balance approach using the FOD model for gas generation coupled with literature values for cover-specific collection efficiency and methane oxidation. This study is unique and valuable because actual field data were used in comparison with modeled data. The magnitude and variation of emissions were estimated for three landfills using site-specific model parameters and gas collection data, and compared to vertical radial plume mapping emissions measurements. For the three landfills, the modeling approach slightly under-predicted measured emissions and over-estimated aggregated collection efficiency, but the two approaches yielded statistically equivalent uncertainties expressed as coefficients of variation. Sources of uncertainty include challenges in large-scale field measurement of emissions and spatial and temporal fluctuations in methane flow balance components (generated, collected, oxidized, and emitted methane). Additional publication of sets of field-scale measurement data and methane flow balance components will reduce the uncertainty in future estimates of fugitive emissions.


Assuntos
Metano/análise , Modelos Químicos , Gerenciamento de Resíduos
2.
Waste Manag ; 32(2): 305-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22000722

RESUMO

Using first-order kinetic empirical models to estimate landfill gas (LFG) generation and collection rates is well recognized in the literature. The uncertainty in the estimated LFG generation rates is a major challenge in evaluating performance of LFG collection and LFG to energy facilities. In this investigation, four methods for quantifying first-order LFG generation model parameters, methane generation potential, L(0), and methane generation rate constant, k, were evaluated. It was found that the model is insensitive to the approach taken in quantifying the parameters. However, considering the recognition of using the model in the literature, the optimum method to estimate L(0) and k is to determine L(0) using disposed municipal solid waste composition and laboratory component specific methane potential values. The k value can be selected by model fitting and regression using the first-order model if LFG collection data are available. When such data are not available, k can be selected from technical literature, based on site conditions. For five Florida case-study landfills L(0) varied from 56 to 77 m(3) Mg(-1), and k varied from 0.04 to 0.13 yr(-1) for the traditional landfills and was 0.10 yr(-1) for the wet cell. Model predictions of LFG collection rates were on average lower than actual collection. The uncertainty (coefficient of variation) in modeled LFG generation rates varied from ±11% to ±17% while landfills were open, ±9% to ±18% at the end of waste placement, and ±16% to ±203% 50 years after waste placement ended.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metano/análise , Eliminação de Resíduos , Florida , Modelos Químicos , Incerteza
3.
Waste Manag ; 31(9-10): 2020-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21703844

RESUMO

Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects.


Assuntos
Energia Renovável , Gerenciamento de Resíduos , Florida , Previsões , Modelos Teóricos , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA