Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 8(14): 7457-7464, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539119

RESUMO

The present case study critically assesses the efficacy of a previously proposed segmentation methodology as a means to discriminate phases via post-processing the image of an elemental map. In the Bi2Te2.5S0.5 multiphase compound, the reference spectra of the Bi2Te3 and Bi2Te2S phases are distinct enough to effectively distinguish two phases during map acquisition. Since the counts of the sulphur-K peak in the X-ray emission data are significantly higher for Bi2Te2S compared to Bi2Te3, the segmentation methodology exploits this variation and enables successful phase discrimination via post-processing the image of the elemental map.

2.
Phys Chem Chem Phys ; 18(48): 32814-32819, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27878169

RESUMO

Multiphase thermoelectric materials have recently attracted considerable attention due to the high thermoelectric efficiencies which can be achieved in these compounds compared to their single-phase counterparts. However, there is very little known on the structural evolution of these phases as a function of temperature. In this work we performed an in situ high temperature structural characterisation of recently reported high efficiency p-type multiphase (PbTe)0.65(PbS)0.25(PbSe)0.1 compounds by hot stage transmission electron microscopy and high-resolution neutron powder diffraction. We observed the microstructural evolution of precipitates and determined the lattice parameters of phases as a function of temperature for materials, which have been heavily and lightly doped with sodium. The role of the sodium is to optimize the concentration of charge carriers. It has been shown to distribute heterogeneously between the phases in multiphase compounds. The dissolution of secondary phases is found to occur at elevated temperatures. Although sodium concentration produces no significant differences between the lattice constants of the phases and the dissolution sequence of precipitates, it affects quite significantly the kinetics of precipitation. The heavily doped samples reach structural thermodynamic equilibrium more quickly than the lightly doped compound. These results are a step forward in designing high performance multiphase thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...