Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 268: 129365, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360140

RESUMO

This study presented chemical immobilization of an iron(III)-based metal-organic framework [NH2-MIL-101(Fe)] on the surface of sand particles and its application for Cr(VI) photocatalytic reduction using visible light. The surface of sand particles was functionalized with (3-chloropropyl)trimethoxy silane to provide the active sites for bond formation with MOF particles. Using a heat treatment step, MOF particles were bonded on the surface of sand particles, thereby providing a photocatalyst more applicable in real environments. The presence of amino-functional groups in MOF was influential in bond formation. Furthermore, they are effective in the activation of the photocatalyst under visible-light irradiation. The photocatalyst properties were investigated by FESEM, FTIR, XPS, EDS, and DRS analysis. The impact of various parameters, such as light power, irradiation and contact time, TDS impact, and pH, was examined. The composite produced by immobilization of NH2-101(Fe) on the surface of sand-Cl showed the high Cr(VI) removal efficiency (80% at 20 mg L-1) as a result of the strong chemical bond formation through the suitable functional groups incorporated in materials. Under the optimum conditions, the reduction rate reached more than 99% using irradiation by 1000 W visible light for 30 min.


Assuntos
Estruturas Metalorgânicas , Catálise , Cromo , Compostos Férricos , Luz , Oxirredução , Areia
2.
BMC Biotechnol ; 20(1): 21, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375744

RESUMO

BACKGROUND: This study investigated the feasibility of enhancing anaerobic digestion of sewage sludge with triple, dual, and individual pretreatment of waste activated sludge with heat, alkalinity, and hydrogen peroxide. These pretreatments disrupt sludge flocs, organisms' cell walls, extracellular polymeric substance, and intracellular organic matter, which increase biodegradability and hydrolysis rate of activate sludge. In addition, the influence of various variables on methane production was analyzed using the response surface methodology with the quadratic model. Eventually, an optimized temperature and chemical concentration for the highest methane production and lowest chemical usage is suggested. RESULTS: The highest amount of methane production was obtained from the sludge pretreated with triple pretreatment (heat (90 °C), alkaline (pH = 12), and hydrogen peroxide (30 mg H2O2/g TS)), which had better performance with 96% higher methane production than that of the control sample with temperature of 25 °C approximately and a pH = 8. Response surface methodology with a quadratic model was also used for analyzing the influence of temperature, pH, and hydrogen peroxide concentration on anaerobic digestion efficiency. It was revealed that the optimized temperature, pH, and hydrogen peroxide concentration for maximizing methane production and solubilization of sludge and minimizing thermal energy and chemical additives of the pretreatments are 83.2 °C, pH = 10.6 and 34.8 mg H2O2/g TS, respectively, has the desirability of 0.67. CONCLUSION: This study reveals that triple pretreatment of waste activated sludge performed better than dual and individual pretreatment, respectively, in all desirable output parameters including increasing methane production as the most important output, increasing in COD solubilization, protein and polysaccharide, and decreasing in VSS solubilization.


Assuntos
Anaerobiose , Peróxido de Hidrogênio/metabolismo , Esgotos/química , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Parede Celular/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise
3.
Sci Rep ; 10(1): 5027, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193461

RESUMO

In this study, actual swage waste activated sludge in batch reactors was employed to assess the synergistic effect of free nitrous acid and Fenton pre-treatments on enhancing methane production in the anaerobic digestion process. In addition to methane enhancement, the mechanisms driving the enhancement were also investigated via measuring enzymes activity and solubilisation of organic matter. This study revealed that the combined pre-treatments solubilised organic matter significantly more than the bioreactors pre-treated with individual FNA and Fenton. For understanding the influence of pre-treatments on solubilisation of organic matter, soluble protein, soluble polysaccharide and soluble chemical oxygen demand (SCOD) were measured before and after the treatments and it was shown that they respectively increased by 973%, 33% and 353% after the treatments. Protease and cellulase activity, as the key constituents of the microbial community in activated sludge, decreased considerably after the combined pre-treatments 42% and 32% respectively, which resulted in considerable methane enhancement. The results corroborate the synergy of the combined FNA and Fenton pre-treatment in degrading the organic and microbial constituents in waste activated sludge, paving the way for the big-scale implementation of these technologies.

4.
J Environ Health Sci Eng ; 17(2): 767-777, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32030150

RESUMO

BACKGROUND: Different bulking agents are used in the compost of dewatered sludge (DWS). The aim of this study has been using of indigenous bulking agents (IBAs) in the enhancing of the DWS class of municipal wastewater from class B to class A and complementary stabilization of it for production of green manure in Sari city, Iran. METHODS: Three IBAs including the Saccharum Wastes (SW), Citrus Purning Wastes (CPW) and Phragmites Australis (PA) from eight IBAs were selected to be compared with the sawdust (SD) that was as a control bulking agent. Five turned windrow piles were constructed on a full scale and on base of optimal C/N equal 25.All experiments were performed on the base of the standard methods on initial mix and final compost. RESULTS: Among five windrow piles, P5 was been the best pile with a weighting ratio of DWS to IBAs (DWS: SW: CPW: PA) equal 1: 0.2: 0.24: 0.28. Pile P1 with weighting ratio DWS: SW equal 1: 0.6, Pile P3 with weighting ratio DWS: PA equal 1: 0.84, Pile P2 with weighting ratio DWS: CPW equal 1: 0.73 and Pile P4 with weighting ratio DWS: SD equal 1: 0.57 were placed in the next rounds. The results showed that the class of DWS enhanced to Class A for about 80 to 97 days and complementary stabilization of DWS by IBAs was done well and produced green manure in term of organic matter, potassium, germination index, PH, C/N and electrical conductivity had reached to the Grade 1 of Iran's manure 10716 standard and in term of phosphorus and moisture had reached to the Grade 2 of this standard. Also heavy metals were below the maximum permissible of standards. CONCLUSION: Using of IBAs, had a higher efficiency than the control bulking agent (sawdust) in enhancing sludge class and its stabilization, so that using of them in combination (mix of IBAs) had the highest efficiency and respectively, Saccharum Wastes (SW), Phragmites Australis (PA), Citrus pruning wastes (CPW) were placed in the next round, and sawdust was placed after them. By adding suitable IBAS, with an optimal ratio in turned windrow method, the class of DWS of sari WWTP enhanced to Class A and complementary stabilization of DWS has been well done and the produced green manure has been reached to agricultural standards and can be safely used in agriculture.

5.
Biotechnol Biofuels ; 11: 233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181773

RESUMO

BACKGROUND: Recently, it has been indicated that free nitrous acid (FNA) and Fenton pre-treatment of waste activated sludge can enhance methane production in anaerobic digestion of waste activated sludge. In addition, it has been revealed that the substances used in these pre-treatments are both eco-friendly and economically attractive because not only are they produced in anaerobic digestion, but they are also low priced. Since primary sludge and waste activated sludge are mixed prior to anaerobic digestion in the majority of wastewater treatment plants, this study aims to assess the influence of combined FNA and Fenton on the anaerobic digestion of mixed sludge. RESULTS: According to this study's results, methane generation from anaerobic digestion of mixed sludge was enhanced when using FNA and Fenton pre-treatment, affirming the effectiveness of the individual and combined pre-treatments in anaerobic digestion of mixed sludge. The enhanced methane production was significant in combined pre-treatments (up to 72%), compared with FNA and Fenton pre-treatment alone (25% and 27%, respectively). This corroborates the positive synergistic effect of the combined pre-treatments on methane production. The enhanced methane can be attributed to augmented soluble fractions of organic matter in addition to increased readily biodegradable organic matter, caused by the pre-treatments. Additionally, the amount of chemical oxygen demand (COD) was assessed during anaerobic digestion, and it was revealed that COD decreased considerably when the pre-treatment strategies were combined. CONCLUSIONS: This study reveals that the pre-treatments are potentially applicable to full-scale wastewater treatment plants because a mixture of primary sludge and waste activated sludge was used for the pre-treatments. Additionally, combined FNA and Fenton pre-treatments prove more effective in enhancing methane production and organic removal than these pre-treatments alone. The enhanced methane production is important for two reasons: a higher amount of renewable energy could be generated from the enhanced methane production and the COD of digested sludge reduces in such a way that facilitates application of the sludge to agricultural lands and reduces sludge transport costs.

6.
Eng Life Sci ; 18(3): 187-195, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32624897

RESUMO

This study was conducted to investigate biodenitrification efficiency with starch-stabilized nano zero valent iron (S-nZVI) as the additional electron donor in the presence of S2O3 in aqueous solutions, under anaerobic conditions. The main challenge for nZVI application is their tendency to agglomeration, thereby resulting in loss of reactivity that necessitates the use of stabilizers to improve their stability. In this study, S-nZVI was synthesized by chemical reduction method with starch as a stabilizer. The synthesized nanoparticles were characterized by TEM, XRD, and FTIR. Transmission electron microscopy (TEM) image shows S-nZVI has a size in the range of 5-27.5 nanometer. Temperature and S-nZVI concentration were the important factors affecting nitrate removal. Biodenitrification increased at 35°C and 500 mg/L of S-nZVI, in these conditions, biodenitrification efficiency increased from 40.45 to 78.84%. Experimental results suggested that biodenitrification increased by decreasing initial nitrate concentration. In the bioreactor biodenitrification rate was 94.07% in the presence of S-nZVI. This study indicated that, Fe2+ could be used as the only electron donor or as the additional electron donor in the presence of S2O3 to increase denitrification efficiency.

7.
Environ Technol ; 34(9-12): 1183-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191451

RESUMO

The performance of a photo-reactor packed with titanium dioxide (TiO2) immobilized on glass beads, initiated by irradiation with natural and artificial ultraviolet (UV) sources, was evaluated in terms of the degradation efficiency of petroleum aromatic hydrocarbons. The effects of parameters such as pH, reaction time, hydrogen peroxide (H2O2) concentration and some ions were investigated. Additionally, the degradation of total organic carbon (TOC) and the formation of byproducts were studied. Photodegradation rates ofbenzene, toluene, ethylbenzene and xylenes (BTEX) by processes of UV/TiO2 and UV/TiO2/H2O2 were found to obey pseudo first-order kinetic models. Results indicated that the effect of pH value was negligible at the pH range of 5.5 to 8.5. TOC removal improved with addition of H2O2 demonstrating that a lack of hydrogen peroxide leads to incomplete mineralization. The effect of cations and anions on the photodegradation efficiencies of BTEX revealed that Mg2+ and Ca2+ caused the most deterioration in BTEX degradation efficiency. However S4O(2-) and CO3(2-) had the most salient inhibitory effects compared with other tested anions. The degradation efficiencies of both systems were investigated for the treatment of real polluted groundwater collected from the city of Tehran. Results showed that the degradation efficiencies of BTEX declined in the presence of inorganic and organic competitor species.


Assuntos
Recuperação e Remediação Ambiental/instrumentação , Hidrocarbonetos Aromáticos/química , Nanopartículas/química , Petróleo , Titânio/química , Poluentes Químicos da Água/química , Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Hidrocarbonetos Aromáticos/análise , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Nitratos/química , Oxirredução , Oxigênio/química , Fenóis/química , Fatores de Tempo , Poluentes Químicos da Água/análise
8.
J Hazard Mater ; 219-220: 35-42, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22464981

RESUMO

This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate.


Assuntos
Indústria Farmacêutica , Eletrocoagulação/métodos , Resíduos Industriais , Oxigênio/química , Poluentes Químicos da Água/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...