Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-452554

RESUMO

The majority of SARS-CoV-2 infections among healthy individuals result in asymptomatic to mild disease. However, the immunological mechanisms defining effective lung tissue protection from SARS-CoV-2 infection remain elusive. Unlike mice solely engrafted with human fetal lung xenograft (fLX), mice co-engrafted with fLX and a myeloid-enhanced human immune system (HNFL mice) are protected against SARS-CoV-2 infection, severe inflammation, and histopathology. Effective control of viral infection in HNFL mice associated with significant macrophage infiltration, and the induction of a potent macrophage-mediated interferon response. The pronounced upregulation of the USP18-ISG15 axis (a negative regulator of IFN responses), by macrophages was unique to HNFL mice and represented a prominent correlate of reduced inflammation and histopathology. Altogether, our work shed light on unique cellular and molecular correlates of lung tissue protection during SARS-CoV-2 infection, and underscores macrophage IFN responses as prime targets for developing immunotherapies against coronavirus respiratory diseases. HIGHLIGHTSO_LIMice engrafted with human fetal lung xenografts (fLX-mice) are highly susceptible to SARS-CoV-2. C_LIO_LICo-engraftment with a human myeloid-enriched immune system protected fLX-mice against infection. C_LIO_LITissue protection was defined by a potent and well-balanced antiviral response mediated by infiltrating macrophages. C_LIO_LIProtective IFN response was dominated by the upregulation of the USP18-ISG15 axis. C_LI

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...