Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genom Data ; 25(1): 63, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898391

RESUMO

OBJECTIVES: Sabkhas represent polyextreme environments characterized by elevated salinity levels, intense ultraviolet (UV) radiation exposure, and extreme temperature fluctuations. In this study, we present the complete genomes of five bacterial isolates isolated from the sabkha-shore region and investigate their genomic organization and gene annotations. A better understanding of the bacterial genomic organization and genetic adaptations of these bacteria holds promise for engineering microbes with tailored functionalities for diverse industrial and agricultural applications, including bioremediation and promotion of plant growth under salinity stress conditions. DATA DESCRIPTION: We present a comprehensive genome sequencing and annotation of five bacteria (kcgeb_sa, kcgeb_sc, kcgeb_sd, kcgeb_S4, and kcgeb_S11) obtained from the shores of the Abu Dhabi Sabkha region. Initial bacterial identification was conducted through 16 S rDNA amplification and sequencing. Employing a hybrid genome assembly technique combining Illumina short reads (NovaSeq 6000) and Oxford Nanopore long reads (MinION), we obtained complete annotated high-quality gap-free genome sequences. The genome sizes of the kcgeb_sa, kcgeb_sc, kcgeb_sd, kcgeb_S4, and kcgeb_S11 isolates were determined to be 2.4 Mb, 4.1 Mb, 2.9 Mb, 5.05 Mb, and 4.1 Mb, respectively. Our analysis conclusively assigned the bacterial isolates as Staphylococcus capitis (kcgeb_sa), Bacillus spizizenii (kcgeb_sc and kcgeb_S11), Pelagerythrobacter marensis (kcgeb_sd), and Priestia aryabhattai (kcgeb_S4).


Assuntos
Genoma Bacteriano , Anotação de Sequência Molecular , Genoma Bacteriano/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Filogenia
2.
Microbiol Spectr ; 12(6): e0361723, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38624222

RESUMO

We conducted a comprehensive analysis of the total microbiome and transcriptionally active microbiome communities in the roots and root nodules of Prosopis cineraria, an important leguminous tree in arid regions of many Asian countries. Mature P. cineraria trees growing in the desert did not exhibit any detected root nodules. However, we observed root nodules on the roots of P. cineraria growing on a desert farm and on young plants growing in a growth chamber, when inoculated with rhizosphere soil, including with rhizosphere soil from near desert tree roots that had no nodules. Compared to nearby soil, non-nodulated roots were enriched with Actinobacteria (e.g., Actinophytocola sp.), whereas root nodules sampled from the desert farm and growth chamber had abundant Alphaproteobacteria (e.g., Ensifer sp.). These nodules yielded many microbes in addition to such nitrogen-fixing bacteria as Ensifer and Sinorhizobium species. Significant differences exist in the composition and abundance of microbial isolates between the nodule surface and the nodule endosphere. Shotgun metagenome analysis of nodule endospheres revealed that the root nodules comprised over 90% bacterial DNA, whereas metatranscriptome analysis showed that the plant produces vastly more transcripts than the microbes in these nodules. Control inoculations demonstrated that four out of six Rhizobium, Agrobacterium, or Ensifer isolates purified from P. cineraria nodules produced nodules in the roots of P. cineraria seedlings under greenhouse conditions. The best nodulation was achieved when seedlings were inoculated with a mixture of those bacterial strains. Though root nodulation could be achieved under water stress conditions, nodule number and nodule biomass increased with copious water availability. .IMPORTANCEMicrobial communities were investigated in roots and root nodules of Prosopis cineraria, a leguminous tree species in arid Asian regions that is responsible for exceptionally important contributions to soil fertility in these dramatically dry locations. Soil removed from regions near nodule-free roots on these mature plants contained an abundance of bacteria with the genetic ability to generate nodules and fix nitrogen but did not normally nodulate in their native rhizosphere environment, suggesting a very different co-evolved relationship than that observed for herbaceous legumes. The relative over-expression of the low-gene-density plant DNA compared to the bacterial DNA in the nodules was also unexpected, indicating a very powerful induction of host genetic contributions within the nodule. Finally, the water dependence of nodulation in inoculated seedlings suggested a possible link between early seedling growth (before a deep root system can be developed) and the early development of nitrogen-fixing capability.


Assuntos
Clima Desértico , Microbiota , Prosopis , Rizosfera , Nódulos Radiculares de Plantas , Microbiologia do Solo , Nódulos Radiculares de Plantas/microbiologia , Prosopis/microbiologia , Prosopis/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Simbiose , Árvores/microbiologia , Fixação de Nitrogênio , Filogenia
3.
Antibiotics (Basel) ; 13(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38391519

RESUMO

The indiscriminate use of antibiotics in agriculture has raised concerns about antibiotic residues in food products, necessitating robust analytical methods for detection and quantification. In this study, our primary aim was to develop a robust and advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology specifically designed for the accurate quantification of ticarcillin degradation products in tomato leaves. The choice of ticarcillin as the target analyte stems from its frequent use in agriculture and the potential formation of degradation products, which can pose a threat to food safety. The use of tomatoes as the target sample matrix in this study is justified by their significance in human diets, their widespread cultivation, and their suitability as a model for assessing antibiotic residue dynamics in diverse agricultural environments. By optimizing the MS/MS parameters, the study successfully demonstrates the practicality and reliability of the employed LC-MS/MS method in accurately assessing ticarcillin degradation product (Thiophene-2-Acetic acid and Thiophene-3-Acetic acid) levels. The chromatographic separation was achieved using a specialized column, ensuring high resolution and sensitivity in detecting analytes. Multiple reaction monitoring (MRM) data acquisition was employed to enhance the selectivity and accuracy of the analysis. The developed method exhibited excellent linearity and precision, meeting the stringent requirements for antibiotic residue analysis in complex matrices. Key outcomes of this study include the successful identification and quantification of ticarcillin and its degradation products in tomato leaves, providing crucial insights into the fate of this antibiotic in agricultural settings. The methodology's applicability was further demonstrated by analyzing real-world samples, highlighting its potential for routine monitoring and ensuring food safety compliance. In summary, our study constitutes a noteworthy advancement in the domain of antibiotic residue analysis, offering a reliable method for quantifying ticarcillin degradation products in tomato leaves. The optimized parameters and MRM-based LC-MS/MS approach enhance the precision and sensitivity of the analysis, opening up opportunities for further studies in the assessment of antibiotic residues in agricultural ecosystems.

4.
Sci Data ; 11(1): 45, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184710

RESUMO

The red palm weevil (RPW) is a highly destructive pest that mainly affects palms, particularly date palms (Phoenix dactylifera), in the Arabian Gulf region. In this study, we present a near-chromosomal-level genome assembly of the RPW using a combination of PacBio HiFi and Dovetail Omini-C reads. The final genome assembly is around 779 Mb in size, with an N50 of ~43 Mb, consistent with our previous flow cytometry estimates. The completeness of the genome was confirmed through BUSCO analysis, which indicates the presence of 99.5% of BUSCO single copy orthologous genes. The genome annotation identified a total of 29,666 protein-coding, 1,091 tRNA and 543 rRNA genes. Overall, the proposed genome assembly is significantly superior to existing assemblies in terms of contiguity, integrity, and genome completeness.


Assuntos
Genoma de Inseto , Gorgulhos , Animais , Citometria de Fluxo , Gorgulhos/genética
5.
Anal Biochem ; 684: 115372, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37940013

RESUMO

Because of the heterogeneity among seedlings of outbreeding species, the use of seedling tissues as a source of DNA is unsuitable for the genomic characterization of elite germplasms. High-quality DNA, free of RNA, proteins, polysaccharides, secondary metabolites, and shearing, is mandatory for downstream molecular biology applications, especially for next-generation genome sequencing and pangenome analysis aiming to capture the complete genetic diversity within a species. The study aimed to accomplish an efficient protocol for the extraction of high-quality DNA suitable for diverse plant species/tissues. We describe a reliable, and consistent protocol suitable for the extraction of DNA from 42 difficult-to-extract plant species belonging to 33 angiosperm (monocot and dicot) families, including tissues such as seeds, roots, endosperm, and flower/fruit tissues. The protocol was first optimized for the outbreeding recalcitrant trees viz., Prosopis cineraria, Conocarpus erectus, and Phoenix dactylifera, which are rich in proteins, polysaccharides, and secondary metabolites, and the quality of the extracted DNA was confirmed by downstream applications. Nine procedures were attempted to extract high-quality, impurities-free DNA from these three plant species. Extraction of the ethanol-precipitated DNA from cetyltrimethylammonium bromide (CTAB) protocol using sodium dodecyl sulfate (SDS) buffer, i.e., the extraction using a cationic (CTAB) detergent followed by an anionic (SDS) detergent was the key for high yield and high purity (1.75-1.85 against A260/280 and an A260/230 ratio of >2) DNA. A vice versa extraction procedure, i.e., SDS buffer followed by CTAB buffer, and also CTAB buffer followed by CTAB, did not yield good-quality DNA. PCR (using different primers) and restriction endonuclease digestion of the DNA extracted from these three plants validated the protocol. The accomplishment of the genome of P. cineraria using the DNA extracted using the modified protocol confirmed its applicability to genomic studies. The optimized protocol successful in extracting high-quality DNA from diverse plant species/tissues extends its applicability and is useful for accomplishing genome sequences of elite germplasm of recalcitrant plant species with quality reads.


Assuntos
DNA , Detergentes , Humanos , Cetrimônio , Plantas/genética , Genômica , Polissacarídeos , DNA de Plantas/genética
6.
Front Plant Sci ; 14: 1182074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731982

RESUMO

Efficient regeneration of transgenic plants from explants after transformation is one of the crucial steps in developing genetically modified plants with desirable traits. Identification of novel plant growth regulators and developmental regulators will assist to enhance organogenesis in culture. In this study, we observed enhanced shoot regeneration from tomato cotyledon explants in culture media containing timentin, an antibiotic frequently used to prevent Agrobacterium overgrowth after transformation. Comparative transcriptome analysis of explants grown in the presence and absence of timentin revealed several genes previously reported to play important roles in plant growth and development, including Auxin Response Factors (ARFs), GRF Interacting Factors (GIFs), Flowering Locus T (SP5G), Small auxin up-regulated RNAs (SAUR) etc. Some of the differentially expressed genes were validated by quantitative real-time PCR. We showed that ticarcillin, the main component of timentin, degrades into thiophene acetic acid (TAA) over time. TAA was detected in plant tissue grown in media containing timentin. Our results showed that TAA is indeed a plant growth regulator that promotes root organogenesis from tomato cotyledons in a manner similar to the well-known auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). In combination with the cytokinin 6-benzylaminopurine (BAP), TAA was shown to promote shoot organogenesis from tomato cotyledon in a concentration-dependent manner. To the best of our knowledge, the present study reports for the first time demonstrating the function of TAA as a growth regulator in a plant species. Our work will pave the way for future studies involving different combinations of TAA with other plant hormones which may play an important role in in vitro organogenesis of recalcitrant species. Moreover, the differentially expressed genes and long noncoding RNAs identified in our transcriptome studies may serve as contender genes for studying molecular mechanisms of shoot organogenesis.

7.
Plant Methods ; 19(1): 84, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568159

RESUMO

BACKGROUND: High-purity RNA serves as the basic requirement for downstream molecular analysis of plant species, especially the differential expression of genes to various biotic and abiotic stimuli. But, the extraction of high-quality RNA is usually difficult from plants rich in polysaccharides and polyphenols, and their presence usually interferes with the downstream applications. The aim of the study is to optimize the extraction of high-quality RNA from diverse plant species/tissues useful for downstream molecular applications. RESULTS: Extraction of RNA using commercially available RNA extraction kits and routine hexadecyltrimethylammonium bromide (CTAB) methods did not yield good quality DNA-free RNA from Prosopis cineraria, Conocarpus erectus, and Phoenix dactylifera. A reliable protocol for the extraction of high-quality RNA from mature leaves of these difficult-to-extract trees was optimized after screening nine different methods. The DNase I-, and proteinase K treatment-free modified method, consisting of extraction with CTAB method followed by TRIzol, yielded high-quality DNA-free RNA with an A260/A280 and A260/A230 ratios > 2.0. Extraction of RNA from Conocarpus, the most difficult one, was successful by avoiding the heat incubation of ground tissue in a buffer at 65 oC. Pre-warming of the buffer for 5-10 min was sufficient to extract good-quality RNA. RNA integrity number of the extracted RNA samples ranged between 7 and 9.1, and the gel electrophoresis displayed intact bands of 28S and 18S RNA. A cDNA library constructed from the RNA of P. cineraria was used for the downstream applications. Real-time qPCR analysis using the cDNA from P. cineraria RNA confirmed the quality. The extraction of good quality RNA from samples of the desert-growing P. cineraria (> 20-years-old) collected in alternate months of the year 2021 (January to December covering winter, spring, autumn, and the very dry and hot summer) proved the efficacy of the protocol. The protocol's broad applicability was further validated by extracting good-quality RNA from 36 difficult-to-extract plant species, including tissues such as roots, flowers, floral organs, fruits, and seeds. CONCLUSIONS: The modified DNase I and Proteinase K treatment-free protocol enables to extract DNA-free, high-quality, intact RNA from a total of 39 difficult-to-extract plant species belonging to 32 angiosperm families is useful to extract good-quality RNA from dicots and monocots irrespective of tissue types and growing seasons.

8.
Bio Protoc ; 13(15): e4788, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37575390

RESUMO

High yield of good quality plasmid DNA from gram -ve bacteria (Agrobacterium tumefaciens, A. rhizogenes, and Rhizobium sp.) and gram +ve bacterium (Bacillus thuringiensis) is difficult. The widely used plasmid extraction kits for Escherichia coli yield a low quantity of poor-quality plasmid DNA from these species. We have optimized an in-house modification of the QIAprep Spin Miniprep kit protocol of Qiagen, consisting of two extraction steps. In the first, the centrifugation after adding neutralization buffer is followed by ethanol (absolute) precipitation of plasmid DNA. In the second extraction step, the precipitated DNA is dissolved in Tris-EDTA (TE) buffer, followed by an addition of 0.5 volumes of 5 M sodium chloride and 0.1 volumes of 20% (w/v) sodium dodecyl sulfate. After incubation at 65 °C for 15 min, the plasmid DNA is extracted with an equal volume of chloroform:isoamyl alcohol (CIA). RNase (20 mg/mL) is added to the upper phase retrieved after centrifugation and is incubated at 37 °C for 15 min. The extraction of the plasmid DNA with an equal volume of CIA is followed by centrifugation and is precipitated from the retrieved upper phase by adding an equal volume of absolute ethanol. The pellet obtained after centrifugation is washed twice with 70% (v/v) ethanol, air dried, dissolved in TE buffer, and quantified. This easy-to-perform protocol is free from phenol extraction, density gradient steps, and DNA binding columns, and yields high-quality plasmid DNA. The protocol opens an easy scale up to yield a large amount of high-quality plasmid DNA, useful for high-throughput downstream applications. Key features The protocol is free from density gradient steps and use of phenol. The protocol is an extension of the QIAprep Spin Miniprep kit (Qiagen) and is applicable for plasmid DNA isolation from difficult-to-extract bacterial species. The protocol facilitates the direct transformation of the ligation product into Agrobacterium by skipping the step of E. coli transformation. The plasmids isolated are of sequencing grade and the method is useful for extracting plasmids for metagenomic studies. Graphical overview Overview of the plasmid isolation protocol (modified QIAprep Spin Miniprep kit) of the present study.

9.
Vaccines (Basel) ; 11(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37112680

RESUMO

The coronavirus disease-19 (COVID-19) pandemic is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At the molecular and cellular levels, the SARS-CoV-2 uses its envelope glycoprotein, the spike S protein, to infect the target cells in the lungs via binding with their transmembrane receptor, the angiotensin-converting enzyme 2 (ACE2). Here, we wanted to investigate if other molecular targets and pathways may be used by SARS-CoV-2. We investigated the possibility of the spike 1 S protein and its receptor-binding domain (RBD) to target the epidermal growth factor receptor (EGFR) and its downstream signaling pathway in vitro using the lung cancer cell line (A549 cells). Protein expression and phosphorylation were examined upon cell treatment with the recombinant full spike 1 S protein or RBD. We demonstrate for the first time the activation of EGFR by the Spike 1 protein associated with the phosphorylation of the canonical Extracellular signal-regulated kinase1/2 (ERK1/2) and AKT kinases and an increase in survivin expression controlling the survival pathway. Our study suggests the putative implication of EGFR and its related signaling pathways in SARS-CoV-2 infectivity and COVID-19 pathology. This may open new perspectives in the treatment of COVID-19 patients by targeting EGFR.

10.
Plant Physiol Biochem ; 197: 107636, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36958151

RESUMO

Hop (Humulus lupulus) biosynthesizes the highly economically valuable secondary metabolites, which include flavonoids, bitter acids, polyphenols and essential oils. These compounds have important pharmacological properties and are widely implicated in the brewing industry owing to bittering flavor, floral aroma and preservative activity. Our previous studies documented that ternary MYB-bHLH-WD40 (MBW) and binary WRKY1-WD40 (WW) protein complexes transcriptionally regulate the accumulation of bitter acid (BA) and prenylflavonoids (PF). In the present study, we investigated the regulatory functions of the R2R3-MYB repressor HlMYB7 transcription factor, which contains a conserved N-terminal domain along with the repressive motif EAR, in regulating the PF- and BA-biosynthetic pathway and their accumulation in hop. Constitutive expression of HlMYB7 resulted in transcriptional repression of structural genes involved in the terminal steps of biosynthesis of PF and BA, as well as stunted growth, delayed flowering, and reduced tolerance to viroid infection in hop. Furthermore, yeast two-hybrid and transient reporter assays revealed that HlMYB7 targets both PF and BA pathway genes and suppresses MBW and WW protein complexes. Heterologous expression of HlMYB7 leads to down-regulation of structural genes of flavonoid pathway in Arabidopsis thaliana, including a decrease in anthocyanin content in Nicotiana tabacum. The combined results from functional and transcriptomic analyses highlight the important role of HlMYB7 in fine-tuning and balancing the accumulation of secondary metabolites at the transcriptional level, thus offer a plausible target for metabolic engineering in hop.


Assuntos
Arabidopsis , Humulus , Fatores de Transcrição/metabolismo , Flavonoides/metabolismo , Humulus/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614331

RESUMO

The water flea Daphnia O.F. Müller 1776 (Crustacea: Cladocera) is an important model of recent evolutionary biology. Here, we report a complete genome of Daphnia (Ctenodaphnia) arabica (Crustacea: Cladocera), recently described species endemic to deserts of the United Arab Emirates. In this study, genome analysis of D. arabica was carried out to investigate its genomic differences, complexity as well as its historical origins within the subgenus Daphnia (Ctenodaphnia). Hybrid genome assembly of D. arabica resulted in ~116 Mb of the assembled genome, with an N50 of ~1.13 Mb (BUSCO score of 99.2%). From the assembled genome, in total protein coding, 5374 tRNA and 643 rRNA genes were annotated. We found that the D. arabica complete genome differed from those of other Daphnia species deposited in the NCBI database but was close to that of D. cf. similoides. However, its divergence time estimate sets D. arabica in the Mesozoic, and our demographic analysis showed a great reduction in its genetic diversity compared to other Daphnia species. Interestingly, the population expansion in its diversity occurred during the megadrought climate around 100 Ka ago, reflecting the adaptive feature of the species to arid and drought-affected environments. Moreover, the PFAM comparative analysis highlights the presence of the important domain SOSS complex subunit C in D. arabica, which is missing in all other studied species of Daphnia. This complex consists of a few subunits (A, B, C) working together to maintain the genome stability (i.e., promoting the reparation of DNA under stress). We propose that this domain could play a role in maintaining the fitness and survival of this species in the desert environment. The present study will pave the way for future research to identify the genes that were gained or lost in this species and identify which of these were key factors to its adaptation to the harsh desert environment.


Assuntos
Cladocera , Daphnia , Animais , Daphnia/genética , Cladocera/genética , Evolução Biológica , Adaptação Fisiológica , DNA Mitocondrial/genética
13.
Front Genet ; 13: 997780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199575

RESUMO

In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.

14.
Microorganisms ; 10(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296358

RESUMO

Citrullus colocynthis grows in the sandy desert soil of the Arabian Peninsula with limited access to water, aside from occasional precipitation or dew. Understanding its ability to produce water-filled fruit and nutrient-rich seeds despite the harsh environment, can be useful for agricultural applications. However, information regarding the microbiome of C. colocynthis is lacking. We hypothesized that C. colocynthis associates with bacteria that aid its survival, like what has been observed in other desert plants. Here, we used 16S rRNA gene data to gain insight into the microbiome of C. colocynthis to identify its associated bacteria. In total, 9818 and 6983 OTUs were generated from root, soil, and leaf samples combined. Overall, bulk soils had the highest alpha diversity, followed by rhizosphere and root zone soils. Furthermore, C. colocynthis is associated with known plant-growth-promoting bacteria (including Acidobacteria, Bacterioidetes, and Actinobacteria), and interestingly a class of non-photosynthetic Cyanobacteria (Melainabacteria) that is more abundant on the inside and outside of the root surface than control samples, suggesting its involvement in the rhizophagy process. This study will provide a foundation for functional studies to further understand how C. colocynthis-microbes interactions help them grow in the desert, paving the path for possible agricultural applications.

15.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291121

RESUMO

This review highlights the pivotal role of root exudates in the rhizosphere, especially the interactions between plants and microbes and between plants and plants. Root exudates determine soil nutrient mobilization, plant nutritional status, and the communication of plant roots with microbes. Root exudates contain diverse specialized signaling metabolites (primary and secondary). The spatial behavior of these metabolites around the root zone strongly influences rhizosphere microorganisms through an intimate compatible interaction, thereby regulating complex biological and ecological mechanisms. In this context, we reviewed the current understanding of the biological phenomenon of allelopathy, which is mediated by phytotoxic compounds (called allelochemicals) released by plants into the soil that affect the growth, survival, development, ecological infestation, and intensification of other plant species and microbes in natural communities or agricultural systems. Advances in next-generation sequencing (NGS), such as metagenomics and metatranscriptomics, have opened the possibility of better understanding the effects of secreted metabolites on the composition and activity of root-associated microbial communities. Nevertheless, understanding the role of secretory metabolites in microbiome manipulation can assist in designing next-generation microbial inoculants for targeted disease mitigation and improved plant growth using the synthetic microbial communities (SynComs) tool. Besides a discussion on different approaches, we highlighted the advantages of conjugation of metabolomic approaches with genetic design (metabolite-based genome-wide association studies) in dissecting metabolome diversity and understanding the genetic components of metabolite accumulation. Recent advances in the field of metabolomics have expedited comprehensive and rapid profiling and discovery of novel bioactive compounds in root exudates. In this context, we discussed the expanding array of metabolomics platforms for metabolome profiling and their integration with multivariate data analysis, which is crucial to explore the biosynthesis pathway, as well as the regulation of associated pathways at the gene, transcript, and protein levels, and finally their role in determining and shaping the rhizomicrobiome.


Assuntos
Microbiota , Raízes de Plantas , Raízes de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Solo/química , Plantas/metabolismo , Feromônios/metabolismo
16.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955640

RESUMO

The mimosoid legumes are a clade of ~40 genera in the Caesalpinioideae subfamily of the Fabaceae that grow in tropical and subtropical regions. Unlike the better studied Papilionoideae, there are few genomic resources within this legume group. The tree Prosopis cineraria is native to the Near East and Indian subcontinent, where it thrives in very hot desert environments. To develop a tool to better understand desert plant adaptation mechanisms, we sequenced the P. cineraria genome to near-chromosomal assembly, with a total sequence length of ~691 Mb. We predicted 77,579 gene models (76,554 CDS, 361 rRNAs and 664 tRNAs) from the assembled genome, among them 55,325 (~72%) protein-coding genes that were functionally annotated. This genome was found to consist of over 58% repeat sequences, primarily long terminal repeats (LTR-)-retrotransposons. We find an expansion of terpenoid metabolism genes in P. cineraria and its relative Prosopis alba, but not in other legumes. We also observed an amplification of NBS-LRR disease-resistance genes correlated with LTR-associated retrotransposition, and identified 410 retrogenes with an active burst of chimeric retrogene creation that approximately occurred at the same time of divergence of P. cineraria from a common lineage with P. alba~23 Mya. These retrogenes include many biotic defense responses and abiotic stress stimulus responses, as well as the early Nodulin 93 gene. Nodulin 93 gene amplification is consistent with an adaptive response of the species to the low nitrogen in arid desert soil. Consistent with these results, our differentially expressed genes show a tissue specific expression of isoprenoid pathways in shoots, but not in roots, as well as important genes involved in abiotic salt stress in both tissues. Overall, the genome sequence of P. cineraria enriches our understanding of the genomic mechanisms of its disease resistance and abiotic stress tolerance. Thus, it is a very important step in crop and legume improvement.


Assuntos
Fabaceae , Prosopis , Resistência à Doença/genética , Fabaceae/genética , Genes de Plantas , Genoma de Planta , Prosopis/genética , Árvores/genética
17.
Sci Rep ; 12(1): 11293, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788147

RESUMO

Sabkhas are hypersaline, mineral-rich, supratidal mudflats that harbor microbes that are adapted to high salt concentration. Sabkha microbial diversity is generally studied for their community composition, but less is known about their genetic structure and heterogeneity. In this study, we analyzed a coastal sabkha for its microbial composition using 16S rDNA and whole metagenome, as well as for its population genetic structure. Our 16S rDNA analysis show high alpha diversity in both inner and edge sabkha than outer sabkha. Beta diversity result showed similar kind of microbial composition between inner and edge sabkha, while outer sabkha samples show different microbial composition. At phylum level, Bacteroidetes (~ 22 to 34%), Euryarchaeota (~ 18 to ~ 30%), unclassified bacteria (~ 24 to ~ 35%), Actinobacteria (~ 0.01 to ~ 11%) and Cyanobacteria (less than 1%) are predominantly found in both inside and edge sabkha regions, whereas Proteobacteria (~ 92 to ~ 97%) and Parcubacteria (~ 1 to ~ 2%) are predominately found in outer sabkha. Our 225 metagenomes assembly from this study showed similar bacterial community profile as observed in 16S rDNA-based analysis. From the assembled genomes, we found important genes that are involved in biogeochemical cycles and secondary metabolite biosynthesis. We observed a dynamic, thriving ecosystem that engages in metabolic activity that shapes biogeochemical structure via carbon fixation, nitrogen, and sulfur cycling. Our results show varying degrees of horizontal gene transfers (HGT) and homologous recombination, which correlates with the observed high diversity for these populations. Moreover, our pairwise population differentiation (Fst) for the abundance of species across the salinity gradient of sabkhas identified genes with strong allelic differentiation, lower diversity and elevated nonsynonymous to synonymous ratio of variants, which suggest selective sweeps for those gene variants. We conclude that the process of HGT, combined with recombination and gene specific selection, constitute the driver of genetic variation in bacterial population along a salinity gradient in the unique sabkha ecosystem.


Assuntos
Cianobactérias , Salinidade , Bacteroidetes/genética , Cianobactérias/genética , DNA Ribossômico , Ecossistema , Cloreto de Sódio , Cloreto de Sódio na Dieta
18.
Front Plant Sci ; 13: 853651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371149

RESUMO

Volatile organic compounds are key components of the fruit metabolome that contribute to traits such as aroma and taste. Here we report on the diversity of 90 flavor-related fruit traits in date palms (Phoenix dactylifera L.) including 80 volatile organic compounds, which collectively represent the fruit volatilome, as well as 6 organic acids, and 4 sugars in tree-ripened fruits. We characterize these traits in 148 date palms representing 135 varieties using headspace solid-phase microextraction gas chromatography. We discovered new volatile compounds unknown in date palm including 2-methoxy-4-vinylphenol, an attractant of the red palm weevil (Rhynchophorus ferrugineus Olivier), a key pest that threatens the date palm crop. Associations between volatile composition and sugar and moisture content suggest that differences among fruits in these traits may be characterized by system-wide differences in fruit metabolism. Correlations between volatiles indicate medium chain and long chain fatty acid ester volatiles are regulated independently, possibly reflecting differences in the biochemistry of fatty acid precursors. Finally, we took advantage of date palm clones in our analysis to estimate broad-sense heritabilities of volatiles and demonstrate that at least some of volatile diversity has a genetic basis.

19.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269961

RESUMO

Owing to their sessile nature, plants have developed a tapestry of molecular and physiological mechanisms to overcome diverse environmental challenges, including abiotic stresses. Adaptive radiation in certain lineages, such as Aizoaceae, enable their success in colonizing arid regions and is driven by evolutionary selection. Sesuvium verrucosum (commonly known as Western sea-purslane) is a highly salt-tolerant succulent halophyte belonging to the Aizoaceae family; thus, it provides us with the model-platform for studying plant adaptation to salt stress. Various transcriptional and translational mechanisms are employed by plants to cope with salt stress. One of the systems, namely, ubiquitin-mediated post-translational modification, plays a vital role in plant tolerance to abiotic stress and other biological process. E3 ligase plays a central role in target recognition and protein specificity in ubiquitin-mediated protein degradation. Here, we characterize E3 ligases in Sesuvium verrucosum from transcriptome analysis of roots in response to salinity stress. Our de novo transcriptome assembly results in 131,454 transcripts, and the completeness of transcriptome was confirmed by BUSCO analysis (99.3% of predicted plant-specific ortholog genes). Positive selection analysis shows 101 gene families under selection; these families are enriched for abiotic stress (e.g., osmotic and salt) responses and proteasomal ubiquitin-dependent protein catabolic processes. In total, 433 E3 ligase transcripts were identified in S. verrucosum; among these transcripts, single RING-type classes were more abundant compared to multi-subunit RING-type E3 ligases. Additionally, we compared the number of single RING-finger E3 ligases with ten different plant species, which confirmed the abundance of single RING-type E3 ligases in different plant species. In addition, differential expression analysis showed significant changes in 13 single RING-type E3 ligases (p-value < 0.05) under salinity stress. Furthermore, the functions of the selected E3 ligases genes (12 genes) were confirmed by yeast assay. Among them, nine genes conferred salt tolerance in transgenic yeast. This functional assay supports the possible involvement of these E3 ligase in salinity stress. Our results lay a foundation for translational research in glycophytes to develop stress tolerant crops.


Assuntos
Aizoaceae , Arabidopsis , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Saccharomyces cerevisiae/metabolismo , Salinidade , Estresse Salino/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Estresse Fisiológico/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Microbiol Resour Announc ; 10(18)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958397

RESUMO

Here, we announce the complete genome sequences of two phosphate-solubilizing rhizobacteria, Pseudomonas atacamensis strain SM1 (genome size, ∼5.9 Mb) and Pseudomonas toyotomiensis strain SM2 (genome size, ∼5.2 Mb), isolated from the rhizosphere of date palms growing in the oasis agroecosystem of the United Arab Emirates (UAE).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...