Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8968, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268715

RESUMO

Reversible phenotypic flexibility allows organisms to better match phenotypes to prevailing environmental conditions and may produce fitness benefits. Costs and constraints of phenotypic flexibility may limit the capacity for flexible responses but are not well understood nor documented. Costs could include expenses associated with maintaining the flexible system or with generating the flexible response. One potential cost of maintaining a flexible system is an energetic cost reflected in the basal metabolic rate (BMR), with elevated BMR in individuals with more flexible metabolic responses. We accessed data from thermal acclimation studies of birds where BMR and/or Msum (maximum cold-induced metabolic rate) were measured before and after acclimation, as a measure of metabolic flexibility, to test the hypothesis that flexibility in BMR (ΔBMR), Msum (ΔMsum), or metabolic scope (Msum - BMR; ΔScope) is positively correlated with BMR. When temperature treatments lasted at least three weeks, three of six species showed significant positive correlations between ΔBMR and BMR, one species showed a significant negative correlation, and two species showed no significant correlation. ΔMsum and BMR were not significantly correlated for any species and ΔScope and BMR were significantly positively correlated for only one species. These data suggest that support costs exist for maintaining high BMR flexibility for some bird species, but high flexibility in Msum or metabolic scope does not generally incur elevated maintenance costs.


Assuntos
Metabolismo Basal , Aves , Animais , Aves/fisiologia , Metabolismo Basal/fisiologia , Aclimatação/fisiologia , Temperatura , Temperatura Baixa , Metabolismo Energético/fisiologia
2.
Sci Total Environ ; 847: 157562, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901895

RESUMO

Kazakhstan is part of the Eurasian Steppes, the world's largest contiguous grassland system. Kazakh grassland systems are largely understudied despite being historically important for agropastoral practices. These grasslands are considered vulnerable to anthropogenic activities and climatic variability. Few studies have examined vegetation dynamics in Central Asia owing to the complex impacts of moisture, climatic and anthropogenic forcings. A comprehensive analysis of spatiotemporal changes of vegetation and its driving factors will help elucidate the causes of grassland degradation. Here, we investigated the individual and pairwise interactive influences of various social-environmental system (SES) drivers on greenness dynamics in Kazakhstan. We sought to examine whether there is a relationship between peak season greenness and its drivers - spring drought, preceding winter freeze-thaw cycles, percent snow cover and snow depth - for Kazakhstan during 2000-2016. As hypothesized, snow depth and spring drought accounted for 60 % and 52 % of the variance in the satellite-derived normalized difference vegetation index (NDVI) in Kazakhstan. The freeze-thaw process accounted for 50 % of NDVI variance across the country. In addition, continuous thawing during the winter increased vegetation greenness. We also found that moisture and topographic factors impacted NDVI more significantly than socioeconomic factors. However, the impacts of socioeconomic drivers on vegetation growth were amplified when they interacted with environmental drivers. Terrain slope and soil moisture had the highest q-values or power of determinant, accounting for ~70 % of the variance in NDVI across the country. Socioeconomic drivers, such as crop production (59 %), population density (48 %), and livestock density (26 %), had significant impacts on vegetation dynamics in Kazakhstan. We found that most of the pairwise interactive influences of the drivers exhibited bi-factor enhancement, and the interaction between soil moisture and elevation was the largest (q = 0.92). Our study revealed the optimal ranges and tipping points of SES drivers and quantified the impacts of various driving factors on NDVI. These findings can help us identify the factors causing grassland degradation and provide a scientific basis for ecological protection in semiarid regions.


Assuntos
Mudança Climática , Monitoramento Ambiental , Ecossistema , Cazaquistão , Estações do Ano , Neve , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...