Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 1039924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311233

RESUMO

Microgravity induces spinal elongation and Low Back Pain (LBP) but the pathophysiology is unknown. Changes in paraspinal muscle viscoelastic properties may play a role. Dry Immersion (DI) is a ground-based microgravity analogue that induces changes in m. erector spinae superficial myofascial tissue tone within 2 h. This study sought to determine whether bilateral m. erector spinae tone, creep, and stiffness persist beyond 2 h; and if such changes correlate with DI-induced spinal elongation and/or LBP. Ten healthy males lay in the DI bath at the Institute of Biomedical Problems (Moscow, Russia) for 6 h. Bilateral lumbar (L1, L4) and thoracic (T11, T9) trunk myofascial tone, stiffness and creep (MyotonPRO), and subjective LBP (0-10 NRS) were recorded before DI, after 1h, 6 h of DI, and 30min post. The non-standing spinal length was evaluated on the bath lifting platform using a bespoke stadiometer before and following DI. DI significantly modulated m. erector spinae viscoelastic properties at L4, L1, T11, and T9 with no effect of laterality. Bilateral tissue tone was significantly reduced after 1 and 6 h DI at L4, L1, T11, and T9 to a similar extent. Stiffness was also reduced by DI at 1 h but partially recovered at 6 h for L4, L1, and T11. Creep was increased by DI at 1 h, with partial recovery at 6 h, although only T11 was significant. All properties returned to baseline 30 min following DI. Significant spinal elongation (1.17 ± 0.20 cm) with mild (at 1 h) to moderate (at 6 h) LBP was induced, mainly in the upper lumbar and lower thoracic regions. Spinal length increases positively correlated (Rho = 0.847, p = 0.024) with middle thoracic (T9) tone reduction, but with no other stiffness or creep changes. Spinal length positively correlated (Rho = 0.557, p = 0.039) with Max LBP; LBP failed to correlate with any m. erector spinae measured parameters. The DI-induced bilateral m. erector spinae tone, creep, and stiffness changes persist beyond 2 h. Evidence of spinal elongation and LBP allows suggesting that the trunk myofascial tissue changes could play a role in LBP pathogenesis observed in real and simulated microgravity. Further study is warranted with longer duration DI, assessment of IVD geometry, and vertebral column stability.

2.
Front Physiol ; 12: 661922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025451

RESUMO

A decrease in muscle tone induced by space flight requires a standardized assessment of changes to control the state of the neuromuscular system. This study is a step toward the development of a unified protocol, aimed at determining the initial effect of the presence or withdrawal of support on muscle tone, the effects of a 2-h supportlessness in Dry Immersion (DI) experiments, and the changes in muscle tone depending on the site of measurement. To perform measurements of changes in muscle tone, we used a MyotonPRO device. The list of muscles that we assessed includes: trunk - mm. deltoideus posterior, trapezius, erector spinae; leg - mm. biceps femoris, rectus femoris, tibialis anterior, soleus, gastrocnemius; foot - m. flexor digitorum brevis, tendo Achillis, aponeurosis plantaris. The study involved 12 healthy volunteers (6 men, 6 women) without musculoskeletal disorders and aged 32.8 ± 1.6 years. At the start of DI, there was a significant decrease in muscle tone of the following muscles: mm. tibialis anterior (-10.9%), soleus (-9.6%), erector spinae (-14.4%), and the tendo Achillis (-15.3%). The decrease continued to intensify over the next 2 h. In contrast, the gastrocnemius muscle demonstrated an increase in muscle tone (+7.5%) 2 h after the start of DI compared to the immediate in-bath baseline. Muscle tone values were found to be site-dependent and varied in different projections of mm. erector spinae and soleus. In previous experiments, we observed a high sensitivity of the myotonometry technique, which was confirmed in this study. To make it possible to compare data from different studies, a standardized protocol for measuring muscle tone for general use in gravitational physiology needs to be developed.

3.
PLoS One ; 12(8): e0182970, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28806419

RESUMO

BACKGROUND: Dry immersion (DI), a ground-based model of microgravity previously used in Russia, has been recently implemented in France. The aim of this study was to analyze early events in a short-term DI model in which all conditions are met to investigate who is first challenged from osteo- or adipo-kines and to what extent they are associated to insulin-regulating hormones. METHODS: Twelve healthy men were submitted to a 3-day DI. Fasting blood was collected during pre-immersion phase for the determination of the baseline data collection (BDC), daily during DI (DI24h, DI48H and DI72h), then after recovery (R+3h and R+24h). Markers of bone turnover, phosphocalcic metabolism, adipokines and associated factors were measured. RESULTS: Bone resorption as assessed by tartrate-resistant acid phosphatase isoform 5b and N-terminal crosslinked telopeptide of type I collagen levels increased as early as DI24h. At the same time, total procollagen type I N- and C-terminal propeptides and osteoprotegerin, representing bone formation markers, decreased. Total osteocalcin [OC] was unaffected, but its undercarboxylated form [Glu-OC] increased from DI24h to R+3h. The early and progressive increase in bone alkaline phosphatase activities suggested an increased mineralization. Dickkopf-1 and sclerostin, as negative regulators of the Wnt-ß catenin pathway, were unaltered. No change was observed either in phosphocalcic homeostasis (calcium and phosphate serum levels, 25-hydroxyvitamin D, fibroblast growth factor 23 [FGF23]) or in inflammatory response. Adiponectemia was unchanged, whereas circulating leptin concentrations increased. Neutrophil gelatinase-associated lipocalin [lipocalin-2], a potential regulator of bone homeostasis, was found elevated by 16% at R+3h compared to DI24h. The secretory form of nicotinamide phosphoribosyl-transferase [visfatin] concentrations almost doubled after one day of DI and remained elevated. Serum insulin-like growth factor 1 levels progressively increased. Fasting insulin concentrations increased during the entire DI, whereas fasting glucose levels tended to be higher only at DI24h and then returned to BDC values. Changes in bone resorption parameters negatively correlated with changes in bone formation parameters. Percent changes of ultra-sensitive C-reactive protein positively correlated with changes in osteopontin, lipocalin-2 and fasting glucose. Furthermore, a positive correlation was found between changes in FGF23 and Glu-OC, the two main osteoblast-/osteocyte-derived hormones. CONCLUSION: Our results demonstrated that DI induced an unbalanced remodeling activity and the onset of insulin resistance. This metabolic adaptation was concomitant with higher levels of Glu-OC. This finding confirms the role of bone as an endocrine organ in humans. Furthermore, visfatin for which a great responsiveness was observed could represent an early and sensitive marker of unloading in humans.


Assuntos
Adipocinas/sangue , Remodelação Óssea , Imersão , Insulina/sangue , Adulto , Biomarcadores/sangue , Peso Corporal , Reabsorção Óssea/sangue , Osso e Ossos/metabolismo , Metabolismo Energético , Fator de Crescimento de Fibroblastos 23 , Hormônios/sangue , Humanos , Masculino , Redes e Vias Metabólicas , Osteogênese
4.
Front Hum Neurosci ; 11: 106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28321186

RESUMO

Human locomotion is a complex sensorimotor behavior whose central control remains difficult to explore using neuroimaging method due to technical constraints, notably the impossibility to walk with a scanner on the head and/or to walk for real inside current scanners. The aim of this functional Magnetic Resonance Imaging (fMRI) study was to analyze interactions between two paradigms to investigate the brain gait control network: (1) mental imagery of gait, and (2) passive mechanical stimulation of the plantar surface of the foot with the Korvit boots. The Korvit stimulator was used through two different modes, namely an organized ("gait like") sequence and a destructured (chaotic) pattern. Eighteen right-handed young healthy volunteers were recruited (mean age, 27 ± 4.7 years). Mental imagery activated a broad neuronal network including the supplementary motor area-proper (SMA-proper), pre-SMA, the dorsal premotor cortex, ventrolateral prefrontal cortex, anterior insula, and precuneus/superior parietal areas. The mechanical plantar stimulation activated the primary sensorimotor cortex and secondary somatosensory cortex bilaterally. The paradigms generated statistically common areas of activity, notably bilateral SMA-proper and right pre-SMA, highlighting the potential key role of SMA in gait control. There was no difference between the organized and chaotic Korvit sequences, highlighting the difficulty of developing a walking-specific plantar stimulation paradigm. In conclusion, this combined-fMRI paradigm combining mental imagery and gait-like plantar stimulation provides complementary information regarding gait-related brain activity and appears useful for the assessment of high-level gait control.

5.
Eur J Appl Physiol ; 116(11-12): 2257-2266, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27688160

RESUMO

PURPOSE: Walking is a complex locomotor process that involves both spinal cord reflexes and cortical integration of peripheral nerve input. Maintaining an upright body position requires not only neuromuscular activity but also cardiovascular regulation. We postulated that plantar mechanical stimulation might modulate autonomic nervous system activity and, thereby, impact blood pressure adaptation during standing. METHODS: Twelve healthy subjects underwent three randomly ordered 45-min 70°-saddle tilt tests while the plantar surfaces of the feet were stimulated using specially engineered Korvit boots in the following modes: (1) no stimulation, (2) disrupted stimulation, and (3) walking mode. Orthostatic tolerance time was measured for each trial. During testing, we obtained an electrocardiogram and measured blood pressure, skin blood flow, and popliteal vein cross-sectional area. We estimated central hemodynamics, baroreflex sensitivity and heart rate variability. RESULTS: Orthostatic tolerance time was not found to differ significantly between test conditions (37.2 ± 10.4, 40.9 ± 7.6, and 41.8 ± 8.2 min, for no stimulation, disrupted stimulation, and walking mode, respectively). No significant differences between treatment groups were observed for stroke volume or cardiac baroreflex sensitivity, both of which decreased significantly from baseline during tilt testing in all groups. Cardiac sympathetic index and popliteal vein cross-sectional area increased at the end of the tilt period in all groups, without significant differences between treatments. CONCLUSIONS: Plantar mechanical stimulation is insufficient for immediate modulation of cardiac sympathetic and parasympathetic activity under orthostatic stress.


Assuntos
Pressão Sanguínea/fisiologia , Débito Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Estimulação Física/métodos , Equilíbrio Postural/fisiologia , Caminhada/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Pé/fisiologia , Humanos , Masculino , Mecanorreceptores/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Postura/fisiologia , Sistema Nervoso Simpático/fisiologia , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...