Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34577921

RESUMO

A cure kinetics investigation of a high temperature-resistant phenol novolac cyanate ester toughened with polyether sulfone (CE-PES blend) was undertaken using non-isothermal differential scanning calorimetry. Thin ply carbon fiber prepreg, based on the CE-PES formulation, was fabricated, and plates for further in-situ cure monitoring were manufactured using automated fiber placement. Online monitoring of the curing behavior utilizing Optimold sensors and Online Resin State software from Synthesites was carried out. The estimation of the glass transition temperature and degree of cure allowed us to compare real time data with the calculated parameters of the CE-PES formulation. Alongside a good agreement between the observed online data and predicted model, the excellent performance of the developed sensors at temperatures above 260 °C was also demonstrated.

2.
ACS Appl Mater Interfaces ; 9(13): 11909-11917, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28290660

RESUMO

The quality of polymer composite materials depends on the distribution of the filler in the polymer matrix. Due to the presence of the oxygen functional groups, graphene oxide (GO) has a strong affinity to epoxy resins, providing potential opportunity for the uniform distribution of GO sheets in the matrix. Another advantage of GO over its nonoxidized counterpart is its ability to exfoliate to single-atomic-layer sheets in water and in some organic solvents. However, these advantages of GO have not yet been fully realized due to the lack of the methods efficiently introducing GO into the epoxy resin. Here we develop a novel homogeneous liquid phase transfer method that affords uniform distribution, and fully exfoliated condition of GO in the polymer matrix. The most pronounced alteration of properties of the cured composites is registered at the 0.10%-0.15% GO content. Addition of as little as 0.10% GO leads to the increase of the Young's modulus by 48%. Moreover, we demonstrate successful introduction of GO into the epoxy matrix containing an active diluent-modifier; this opens new venues for fabrication of improved GO-epoxy-modifier composites with a broad range of predesigned properties. The experiments done on reproducing the two literature methods, using alternative GO introduction techniques, lead to either decrease or insignificant increase of the Young's modulus of the resulting GO-epoxy composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...