Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275859

RESUMO

The clinical management of wounds is known to be a significant challenge: not only does the dressing need to ensure and provide the appropriate barrier and healing characteristics, but consideration of patient compliance concerning comfort, functionality, and practicality also needs to be included. The poly(3-hydroxybutyrate-co-4-hydroxubutyrate) (P(3HB-co-4HB)) copolymer, isolated from Cupriavidus malaysiensis USM1020 (C. malaysiensis USM1020), was produced in the presence of excess carbon sources (1,4-butanediol and 1,6-hexanediol) using either a shake flask cultivation process or a bioreactor fermentation system. P(3HB-co-4HB) is widely known to be biodegradable and highly biocompatible and contains a tuneable 4HB monomer molar fraction, which is known to affect the final physicochemical properties of the intracellular copolymer. In this paper, we describe not only the fabrication of the polymeric gel but also its optimised profiling using a range of physical and mechanical techniques, i.e., SEM, FTIR, DMA, DSC, and WCA. The further enhancement of the gel through additional functionalisation with sol-gel-derived bioactive glass and liquid-exfoliated graphene was also investigated. The biocompatibility and biological characterisation of the substrates was assessed using murine osteoblasts (MC3T3), human primary dermal fibroblasts (HDFs), human fibroblast (BJ) cells, and standard cell culture assays (i.e., metabolic activity, LDH release, and live/dead staining). In short, P(3HB-co-4HB) was successfully isolated from the bacteria, with the defined physico-chemical profiles dependent on the culture substrate and culturing platform used. The additional enhancement of the copolymer with bioactive glass and/or graphene was also demonstrated by varying the combination loading of the materials, i.e., graphene resulted in an increase in tensile strength (~11 MPa) and the wettability increased following the incorporation of bioactive glass and 0.01 wt% graphene (WCA ~46.3°). No detrimental effects in terms of biocompatibility were noticed during the 7 days of culture in the primary and established cell lines. This study demonstrates the importance of optimising each of the individual components within the biocomposite and their relationship concerning the fine-tuning of the material's properties, thus targeting and impacting the endpoint application.

2.
Polymers (Basel) ; 13(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065404

RESUMO

Antimicrobial irradiated seaweed-neem biocomposite films were synthesized in this study. The storage functional properties of the films were investigated. Characterization of the prepared films was conducted using SEM, FT-IR, contact angle, and antimicrobial test. The macroscopic and microscopic including the analysis of the functional group and the gas chromatography-mass spectrometry test revealed the main active constituents present in the neem extract, which was used an essential component of the fabricated films. Neem leaves' extracts with 5% w/w concentration were incorporated into the matrix of seaweed biopolymer and the seaweed-neem bio-composite film were irradiated with different dosages of gamma radiation (0.5, 1, 1.5, and 2 kGy). The tensile, thermal, and the antimicrobial properties of the films were studied. The results revealed that the irradiated films exhibited improved functional properties compared to the control film at 1.5 kGy radiation dosage. The tensile strength, tensile modulus, and toughness exhibited by the films increased, while the elongation of the irradiated bio-composite film decreased compared to the control film. The morphology of the irradiated films demonstrated a smoother surface compared to the control and provided surface intermolecular interaction of the neem-seaweed matrix. The film indicated an optimum storage stability under ambient conditions and demonstrated no significant changes in the visual appearance. However, an increase in the moisture content was exhibited by the film, and the hydrophobic properties was retained until nine months of the storage period. The study of the films antimicrobial activities against Staphylococcus aureus (SA), and Bacillus subtilis (BS) indicated improved resistance to bacterial activities after the incorporation of neem leaves extract and gamma irradiation. The fabricated irradiated seaweed-neem bio-composite film could be used as an excellent sustainable packaging material due to its effective storage stability.

3.
Polymers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067569

RESUMO

The global transplantation market size was valued at USD 8.4 billion in 2020 and is expected to grow at a compound annual growth rate of 11.5% over the forecast period. The increasing demand for tissue transplantation has inspired researchers to find alternative approaches for making artificial tissues and organs function. The unique physicochemical and biological properties of biopolymers and the attractive structural characteristics of aerogels such as extremely high porosity, ultra low-density, and high surface area make combining these materials of great interest in tissue scaffolding and regenerative medicine applications. Numerous biopolymer aerogel scaffolds have been used to regenerate skin, cartilage, bone, and even heart valves and blood vessels by growing desired cells together with the growth factor in tissue engineering scaffolds. This review focuses on the principle of tissue engineering and regenerative medicine and the role of biopolymer aerogel scaffolds in this field, going through the properties and the desirable characteristics of biopolymers and biopolymer tissue scaffolds in tissue engineering applications. The recent advances of using biopolymer aerogel scaffolds in the regeneration of skin, cartilage, bone, and heart valves are also discussed in the present review. Finally, we highlight the main challenges of biopolymer-based scaffolds and the prospects of using these materials in regenerative medicine.

4.
Crit Rev Biotechnol ; 41(4): 474-490, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33726581

RESUMO

Polyhydroxyalkanoate (PHA) is a biogenic polymer that has the potential to substitute synthetic plastic in numerous applications. This is due to its unique attribute of being a biodegradable and biocompatible thermoplastic, achievable through microbial fermentation from a broad utilizable range of renewable resources. Among all the PHAs discovered, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] stands out as a next generation healthcare biomaterial for having high biopharmaceutical and medical value since it is highly compatible to mammalian tissue. This review provides a critical assessment and complete overview of the development and trend of P(3HB-co-4HB) research over the last few decades, highlighting aspects from the microbial strain discovery to metabolic engineering and bioprocess cultivation strategies. The article also outlines the relevance of P(3HB-co-4HB) as a material for high value-added products in numerous healthcare-related applications.


Assuntos
Poli-Hidroxialcanoatos , Animais , Hidroxibutiratos , Engenharia Metabólica , Poliésteres
5.
Antibiotics (Basel) ; 9(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998197

RESUMO

A biopolymer-based aerogel has been developed to become one of the most potentially utilized materials in different biomedical applications. The biopolymer-based aerogel has unique physical, chemical, and mechanical properties and these properties are used in tissue engineering, biosensing, diagnostic, medical implant and drug delivery applications. Biocompatible and non-toxic biopolymers such as chitosan, cellulose and alginates have been used to deliver antibiotics, plants extract, essential oils and metallic nanoparticles. Antibacterial aerogels have been used in superficial and chronic wound healing as dressing sheets. This review critically analyses the utilization of biopolymer-based aerogels in antibacterial delivery. The analysis shows the relationship between their properties and their applications in the wound healing process. Furthermore, highlights of the potentials, challenges and proposition of the application of biopolymer-based aerogels is explored.

6.
Nanomaterials (Basel) ; 10(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114572

RESUMO

Polyhydroxyalkanoate (PHA) copolymers show a relatively higher in vivo degradation rate compared to other PHAs, thus, they receive a great deal of attention for a wide range of medical applications. Nanoparticles (NPs) loaded with poorly water-soluble anticancer drug docetaxel (DCX) were produced using poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB), copolymers biosynthesised from Cupriavidus malaysiensis USMAA1020 isolated from the Malaysian environment. Three copolymers with different molar proportions of 4-hydroxybutirate (4HB) were used: 16% (PHB16), 30% (PHB30) and 70% (PHB70) 4HB-containing P(3HB-co-4HB). Blank and DCX-loaded nanoparticles were then characterized for their size and size distribution, surface charge, encapsulation efficiency and drug release. Preformulation studies showed that an optimised formulation could be achieved through the emulsification/solvent evaporation method using PHB70 with the addition of 1.0% PVA, as stabilizer and 0.03% VitE-TPGS, as surfactant. DCX-loaded PHB70 nanoparticles (DCX-PHB70) gave the desired particle size distribution in terms of average particle size around 150 nm and narrow particle size distribution (polydispersity index (PDI) below 0.100). The encapsulation efficiency result showed that at 30% w/w drug-to-polymer ratio: DCX- PHB16 NPs were able to encapsulate up to 42% of DCX; DCX-PHB30 NPs encapsulated up to 46% of DCX and DCX-PHB70 NPs encapsulated up to 50% of DCX within the nanoparticle system. Approximately 60% of DCX was released from the DCX-PHB70 NPs within 7 days for 5%, 10% and 20% of drug-to-polymer ratio while for the 30% and 40% drug-to-polymer ratios, an almost complete drug release (98%) after 7 days of incubation was observed.

7.
Polymers (Basel) ; 12(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422913

RESUMO

Neem leaves extract was incorporated into the matrix of seaweed biopolymer, and the seaweed-neem biocomposite films were irradiated with various doses of gamma irradiation (0.5, 1.5, 2.5, 3.5, and 4.5 kGy). The physical, barrier, antimicrobial, and mechanical properties of the films were studied. The incorporation of 5% w/w neem leaves extract into a seaweed-based film, and gamma irradiation dose of 2.5 kGy was most effective for improved properties of the film. The results showed that the interfacial interaction of the seaweed-neem improved with physical changes in colour and opacity. The water solubility, moisture content, and water vapour permeability and biodegradability rate of the film reduced. The contact angle values increased, which was interpreted as improved hydrophobicity. The tensile strength and modulus of the films increased, while the elongation of the composite films decreased compared to the control film. The film's antimicrobial activities against bacteria were improved. Thus, neem leaves extract in combination with the application of gamma irradiation enhanced the performance properties of the film that has potential as packaging material.

8.
Data Brief ; 28: 104777, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31871967

RESUMO

Electrospinning is a promising approach to fabricate desirable electropsun nanofibrous scaffold that could be applied in the medical fields. In this study, bacterial copolymer poly(3-hydroxybutyrate-co-68 mol% 4-hydroxybutyrate) [P(3HB-co-68mol% 4HB)] copolymer produced was fabricated into electrospun nanofibers using various combination of electrospinning parameters including the polymer solution, applied voltage and injection speed. The morphology of the fabricated scaffolds were observed using scanning electron microscope (SEM). The SEM images were analysed for the fibre diameter distribution of the scaffolds using Image Analyser. The results revealed that the 8 wt% of polymer solution, 25 kV/cm of the applied voltage and 1.5 mL/h of the injection speed was the most suitable combination. This electrospinning parameters combination fabricated nanofibrous P(3HB-co-4HB) scaffold with smooth, beadles and uniform nanofibers with small fibre diameter distribution.

9.
Protein Expr Purif ; 155: 35-42, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30352276

RESUMO

Depolymerase is an enzyme that plays an important role in the hydrolysis of polyhydroxyalkanoates [PHAs]. In the current study, Burkholderia cepacia DP1 was obtained from Penang, Malaysia in which the enzyme was purified using ion exchange and gel filtration (Superdex-75) column chromatography. The molecular mass of the enzyme was estimated to be 53.3 kDa using SDS-PAGE. The enzyme activity was increased to 36.8 folds with the recovery of 16.3% after purification. The enzyme activity was detected between pH 6.0-10 and at 35-55 °C with pH 6.0 and 45 °C facilitating the maximum activity. Depolymerase was inactivated by Tween-20, Tween-80, SDS and PMSF, but insensitive to metal ions (Mg2+, Ca2+, K+, Na2+, Fe3+) and organic solvents (methanol, ethanol, and acetone). The apparent Km values of the purified P(3HB) depolymerase enzyme for P(3HB) and P(3HB-co-14%3HV) were 0.7 mg/ml and 0.8 mg/ml, respectively. The Vmax values of the purified enzyme were 10 mg/min and 8.89 mg/min for P(3HB) and P(3HB-co-14%3HV), respectively. The current study discovered a new extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase enzyme from Burkholderia cepacia DP1 isolated and purified to homogeneity from the culture supernatant. To the best of our knowledge, this is the first report demonstrating the purification and biochemical characterization of P(3HB) depolymerase enzyme from genus Burkholderia.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia cepacia/enzimologia , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Biodegradação Ambiental , Burkholderia cepacia/metabolismo , Cromatografia por Troca Iônica , Plásticos/química , Poli-Hidroxialcanoatos/metabolismo , Especificidade por Substrato
10.
Int J Biol Macromol ; 125: 1024-1032, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30557643

RESUMO

P(3HB-co-4HB) with a high 4HB monomer composition was previously successfully produced using the transformant Cupriavidus malaysiensis USMAA1020 containing an additional copy of the PHA synthase gene. In this study, high PHA density fed-batch cultivation strategies were developed for such 4HB-rich P(3HB-co-4HB). The pulse, constant and mixed feeding strategies resulted in high PHA accumulation, with a PHA content of 74-92 wt% and 4HB monomer composition of 92-99 mol%. The pulse-feed of carbon and nitrogen resulted in higher PHA concentration (30.7 g/L) than carbon alone (22.3 g/L), suggesting that a trace amount of nitrogen is essential to support cell density for PHA accumulation. Constant feeding was found to be a more feasible strategy than mixed feeding, since the latter caused a drastic fluctuation in the C/N ratio, as evidenced by higher biomass formation indicating more carbon flux towards the competitive TCA pathway. A two-times carbon and nitrogen pulse feeding was the most optimal strategy achieving 92 wt% accommodation of the total biomass, with the highest PHA concentration (46 g/L) and yield (Yp/x) of 11.5 g/g. The strategy has kept the C/N at optimal ratio during the active PHA-producing phase. This is the first report of the production of high PHA density for 4HB-rich P(3HB-co-4HB).


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Cupriavidus/enzimologia , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Aciltransferases/genética , Proteínas de Bactérias/genética , Carbono/metabolismo , Cupriavidus/genética , Fermentação , Expressão Gênica , Microbiologia Industrial , Cinética , Engenharia Metabólica/métodos , Nitrogênio/metabolismo , Transformação Bacteriana
11.
Int J Biol Macromol ; 116: 217-223, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29723627

RESUMO

Long carbon chain alkanediols are used in the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], however these substrates possess high toxicity towards bacterial cells. This study demonstrated the effective utilisation of a long carbon chain alkanediol, namely 1,8-octanediol, to enhance the yield and production of a copolymer with a high molecular weight of over 1000 kDa, which is desirable for novel applications in medical and biopharmaceuticals. The increased PHA content (47-61 wt%) and concentration (1.7-4.5 g/L) was achieved by additional feeding of a combination of C4 substrates at C/N 10, with 1,8-octanediol + γ-butyrolactone producing P(3HB-co-22 mol% 4HB) with a high molecular weight (1060 kDa) and elongation at break of 970%. The DO-stat feeding strategy of C/N 10 has shown an increment of PHA concentration for both carbon combination, 0.45-4.27 g/L and 0.32-3.36 g/L for 1,8-octanediol + sodium 4-hydroxybutyrate (4HB-Na) and 1,8-octanediol + γ-butyrolactone, but with a slight reduction on molecular weight and mechanical strength. Nonetheless, further study revealed that a nitrogen-absence feeding strategy could retain the high molecular weight and elongation at break of the copolymer, and simultaneously improving the overall P(3HB-co-4HB) production.


Assuntos
Carbono/química , Cupriavidus/química , Hidroxibutiratos/química , Poliésteres/química , Polímeros/química , Peso Molecular , Nitrogênio/química
12.
Bioprocess Biosyst Eng ; 40(11): 1643-1656, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28762009

RESUMO

This study reports an efficient fed-batch strategy to improve poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer production by Cupriavidus sp. USMAA2-4 with enhanced mechanical properties in bioreactor. The cultivations have been performed by combining oleic acid with γ-butyrolactone at different concentration ratios with 1-pentanol at a fixed concentration. The batch and fed-batch fermentations have resulted in P(3HB-co-3HV-co-4HB) with compositions of 9-35 mol% 3HV and 4-24 mol% 4HB monomers. The DO-stat fed-batch fermentation strategies have significantly improved the production with a maximum 4.4-fold increment of cell dry weight (CDW). Besides, appropriate feeding of the substrates has resulted in an increment of terpolymer productivity from 0.086-0.347 g/L/h, with a significantly shortened cultivation time. The bacterial growth and terpolymer formation have been found to be affected by the concentration of carbon sources supplied. Characterization of P(3HB-co-3HV-co-4HB) has demonstrated that incorporation of 3HV and 4HB monomer has significantly improved the physical and thermodynamic properties of the polymers, by reducing the polymer's crystallinity. The tensile strength, Young's modulus of the terpolymer has been discovered to increase with the increase of M w. The fed-batch fermentation strategies employed in this study have resulted in terpolymers with a range of flexible materials having improved tensile strength and Young's modulus as compared to the terpolymer produced from batch fermentation. Possession of lower melting temperature indicates an enhanced thermal stability which broadens the polymer processing window.


Assuntos
Reatores Biológicos , Teste de Materiais , Poliésteres/química , Varredura Diferencial de Calorimetria , Cromatografia Gasosa , Cromatografia em Gel , Fermentação , Resistência à Tração , Termogravimetria
13.
Int J Biol Macromol ; 101: 983-995, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28373050

RESUMO

This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via ß-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, ß, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, Mw of 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched.


Assuntos
Cupriavidus/metabolismo , Elastômeros/metabolismo , Hidroxibutiratos/metabolismo , Plásticos/metabolismo , Poliésteres/metabolismo , Temperatura , Carbono/metabolismo , Elastômeros/química , Hidroxibutiratos/química , Cinética , Peso Molecular , Plásticos/química , Poliésteres/química
14.
Arch Microbiol ; 199(1): 63-67, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27506901

RESUMO

A Gram-staining-negative, aerobic, rod-shaped, yellow-orange-pigmented, gliding bacterium, designated as strain ST2L12T, was isolated from estuarine mangrove sediment from Matang Mangrove Forest, Perak, Malaysia. Strain ST2L12T grew at 15-39 °C, pH 6-8 and in 1-6 % (w/v) NaCl. This strain was able to degrade xylan and casein. 16S rRNA gene sequence analysis showed 95.3-92.8 % similarity to members of the genera Mangrovimonas, Meridianimaribacter, Sediminibacter, Gaetbulibacter and Hoppeia. Phylogenetic analysis indicated that it belonged to the family Flavobacteriaceae. Respiratory quinone present was menaquinone-6 (MK-6), and the DNA G+C content was 38.3 mol%. The predominant fatty acids were iso-C15:0, iso-C15:1, C15:0 and iso-C17:0 3-OH. Moreover, previous genome comparison study showed that the genome of ST2L12T is 1.4 times larger compared to its closest relative, Mangrovimonas yunxiaonensis LYYY01T. Phenotypic, fatty acid, 16S rRNA gene sequence and previous genome data indicate that strain ST2L12T represents a novel species of the genus Mangrovimonas in the family Flavobacteriaceae, for which the name Mangrovimonas xylaniphaga sp. nov. is proposed. The type strain of Mangrovimonas xylaniphaga is ST2L12T (=LMG 28914T=JCM 30880T).


Assuntos
Flavobacteriaceae/isolamento & purificação , Sedimentos Geológicos/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Flavobacteriaceae/classificação , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Sedimentos Geológicos/química , Malásia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Áreas Alagadas
15.
Biomed Mater ; 11(5): 055009, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27710927

RESUMO

Polyhydroxyalkanoate (PHA) is a microbial polymer that has been at the forefront of many attempts at tissue engineering. However, the surface of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) is hydrophobic with few recognition sites for cell attachment. Various concentrations of fish-scale collagen peptides (FSCPs) were incorporated into P(3HB-co-4HB) copolymer by aminolysis. Later, FSCPs were introduced onto the aminolyzed P(3HB-co-4HB) scaffolds. Introduction of the FSCP groups was verified using Fourier transform infrared spectroscopy and the ninhydrin method. The effect of the incorporation of FSCPs on hydrophilicity was investigated using the water contact angle. As the concentration of FSCPs increased, the water contact angle decreased. In vitro study demonstrated that P(3HB-co-4HB)/FSCP scaffolds provided better cell attachment and growth of L929 mouse fibroblast cells and better cell proliferation. In vivo study showed that P(3HB-co-4HB)/1.5 wt% FSCPs had a significant effect on wound contractions, with the highest percentage of wound closure (61%) in 7 d.


Assuntos
Escamas de Animais/química , Bandagens , Colágeno/química , Hidroxibutiratos/química , Peptídeos/química , Poliésteres/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células , Fibroblastos/metabolismo , Peixes , Substâncias Macromoleculares , Masculino , Camundongos , Ninidrina/química , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Água/química , Cicatrização
16.
Mater Sci Eng C Mater Biol Appl ; 66: 147-155, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27207048

RESUMO

The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20mol% 4HB [53.2°], P(3HB-co-35mol%4HB)[48.9°], P(3HB-co-50mol%4HB)[44.5°] and P(3HB-co-82mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Hidroxibutiratos/química , Nanofibras/química , Poliésteres/química , Animais , Bandagens , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Ratos , Ratos Sprague-Dawley , Pele/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Molhabilidade , Cicatrização/efeitos dos fármacos
17.
Enzyme Res ; 2015: 212159, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664741

RESUMO

Bacteria capable of degrading polyhydroxyalkanoates (PHA) by secreting extracellular depolymerase enzymes were isolated from water and soil samples collected from various environments in Malaysia. A total of 8 potential degraders exhibited clear zones on poly(3-hydroxybutyrate) [P(3HB)] based agar, indicating the presence of extracellular PHA depolymerase. Among the isolates, DP5 exhibited the largest clearing zone with a degradation index of 6.0. The highest degradation activity of P(3HB) was also observed with depolymerase enzyme of DP5 in mineral salt medium containing P(3HB). Based on biochemical characterization and 16S rRNA cloning and sequencing, isolate DP5 was found to belong to the genus Acidovorax and subsequently named as Acidovorax sp. DP5. The highest extracellular depolymerase enzyme activity was achieved when 0.25% (w/v) of P(3HB) and 1 g/L of urea were used as carbon and nitrogen source, respectively, in the culture media. The most suitable assay condition of the depolymerase enzyme in response to pH and temperature was tested. The depolymerase produced by strain Acidovorax sp. DP5 showed high percentage of degradation with P(3HB) films in an alkaline condition with pH 9 and at a temperature of 40°C.

18.
J Ind Microbiol Biotechnol ; 42(9): 1291-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26233315

RESUMO

Two-stage fermentation was normally employed to achieve a high poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] productivity with higher 4HB molar fraction. Here, we demonstrated single-stage fermentation method which is more industrial feasible by implementing mixed-substrate cultivation strategy. Studies on bioreactor scale show a remarkably high PHA accumulation of 73 wt%, contributing to a high PHA concentration and product yield of 8.6 g/L and 2.7 g/g, respectively. This fermentation strategy has resulted in copolymers with wider range of 4HB monomer composition, which ranges from 12 to 55 mol%. These copolymers show a broad range of weight average molecular weight (M w ) from 119.5 to 407.0 kDa. The copolymer characteristics were found to be predominantly affected by the nature of the substrates and the mixture strategies, regardless of the 4HB monomer compositions. This was supported by the determination of copolymer randomness using (13)C-NMR analysis. The study warrants significantly in the copolymer scale-up and modeling at industrial level.


Assuntos
Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Reatores Biológicos , Meios de Cultura , Cupriavidus/metabolismo , Módulo de Elasticidade , Fermentação , Hidroxibutiratos/química , Peso Molecular , Poliésteres/química
19.
Appl Biochem Biotechnol ; 176(5): 1315-34, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25951779

RESUMO

Copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has been the center of attention in the bio-industrial fields, as it possesses superior mechanical properties compared to poly(3-hydroxybutyrate) [P(3HB)]. The usage of oleic acid and 1-pentanol was exploited as the carbon source for the production of P(3HB-co-3HV) copolymer by using a locally isolated strain Cupriavidus sp. USMAA2-4. In this study, the productivity of polyhydroxyalkanoate (PHA) was improved by varying the frequency of feeding in fed-batch culture. The highest productivity (0.48 g/L/h) that represents 200 % increment was obtained by feeding the carbon source and nitrogen source three times and also by considering the oxygen uptake rate (OUR) and oxygen transfer rate (OTR). A significantly higher P(3HB-co-3HV) concentration of 25.7 g/L and PHA content of 66 wt% were obtained. The 3-hydroxyvalerate (3HV) monomer composition obtained was 24 mol% with the growth of 13.3 g/L. The different frequency of feeding carried out has produced a blend copolymer and has broadened the monomer distribution. In addition, increase in number of granules was also observed as the frequency of feeding increases. In general, the most glaring increment in productivity offer advantage for industrial P(3HB-co-3HV) production, and it is crucial in developing cost-effective processes for commercialization.


Assuntos
Cupriavidus/metabolismo , Oxigênio/metabolismo , Ácidos Pentanoicos/metabolismo , Polímeros/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Carbono/farmacologia , Cupriavidus/efeitos dos fármacos , Cupriavidus/ultraestrutura , Fermentação/efeitos dos fármacos , Cinética , Peso Molecular , Nitrogênio/farmacologia , Solubilidade , Temperatura
20.
Biotechnol Prog ; 30(6): 1469-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25181613

RESUMO

This work aims to shed light in the fabrication of poly(3-hydroxybutyrate-co-44%-4-hydroxybutyrate)[P(3HB-co-44%4HB)]/chitosan-based silver nanocomposite material using different contents of silver nanoparticle (SNP); 1-9 wt%. Two approaches were applied in the fabrication; namely solvent casting and chemical crosslinking via glutaraldehyde (GA). A detailed characterization was conducted in order to yield information regarding the nanocomposite material. X-ray diffraction analysis exhibited the nature of the three components that exist in the nanocomposite films: P(3HB-co-4HB), chitosan, and SNP. In term of mechanical properties, tensile strength, and elongation at break were significantly improved up to 125% and 22%, respectively with the impregnation of the SNP. The melting temperature of the nanocomposite materials was increased whereas their thermal stability was slightly changed. Scanning electron microscopy images revealed that incorporation of 9 wt% of SNP caused agglomeration but the surface roughness of the material was significantly improved with the loading. Staphylococcus aureus and Escherichia coli were completely inhibited by the nanocomposite films with 7 and 9 wt% of SNP, respectively. On the other hand, degradation of the nanocomposite materials outweighed the degradation of the pure copolymer. These bioactive and biodegradable materials stand a good chance to serve the vast need of biomedical applications namely management and care of wound as wound dressing.


Assuntos
Anti-Infecciosos/metabolismo , Quitosana/metabolismo , Hidroxibutiratos/metabolismo , Nanocompostos/química , Poliésteres/metabolismo , Prata/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Prata/química , Prata/farmacologia , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...