Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 33(5): 1139-1146, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28068766

RESUMO

Ligand/receptor multivalent interactions have been exploited to drive self-assembly of nanoparticles, hard colloids, and, more recently, compliant units including emulsion droplets and lipid vesicles. In deformable liposomes, formation of links between two membranes produces morphological changes depending on the amount of ligands in the environment. Here, we study a proof-of-concept biosensing system in which single lipid vesicles adhere to a flat supported lipid bilayer, both decorated with membrane-anchored biotinylated receptors. Adhesion is driven by multivalent streptavidin (SA) ligands forming bridges between the vesicles and the supported bilayer. Upon changing the concentration of ligands, we characterize the morphological and mechanical changes of the vesicles, including the formation of a stable adhesion patch, membrane tension, and the kinetics of bridge rupture/formation. We observe vesicle binding only within a specific range of ligand concentrations: adhesion does not occur if the amount of SA is either too low or too high. A theoretical model is presented, elucidating the mechanism underlying this observation, particularly, the role of SA multivalency in determining the onset of adhesion. We elaborate on how the behavior of membranes studied here could be exploited in next-generation (bio)molecular analytical devices.


Assuntos
Bicamadas Lipídicas/química , Estreptavidina/química , Ligantes , Tamanho da Partícula , Propriedades de Superfície
2.
Interface Focus ; 6(4): 20160018, 2016 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-27499844

RESUMO

Many countries have a rapidly ageing population, placing strain on health services and creating a growing market for assistive technology for older people. We have, through a student-led, 12-week project for 10 students from a variety of science and engineering backgrounds, developed an integrated sensor system to enable older people, or those at risk, to live independently in their own homes for longer, while providing reassurance for their family and carers. We provide details on the design procedure and performance of our sensor system and the management and execution of a short-term, student-led research project. Detailed information on the design and use of our devices, including a door sensor, power monitor, fall detector, general in-house sensor unit and easy-to-use location-aware communications device, is given, with our open designs being contrasted with closed proprietary systems. A case study is presented for the use of our devices in a real-world context, along with a comparison with commercially available systems. We discuss how the system could lead to improvements in the quality of life of older users and increase the effectiveness of their associated care network. We reflect on how recent developments in open source technology and rapid prototyping increase the scope and potential for the development of powerful sensor systems and, finally, conclude with a student perspective on this team effort and highlight learning outcomes, arguing that open technologies will revolutionize the way in which technology will be deployed in academic research in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...