Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0295390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060554

RESUMO

Dengue, Zika and chikungunya are Aedes-borne viral diseases that have become great global health concerns in the past years. Several countries in Africa have reported outbreaks of these diseases and despite Ghana sharing borders with some of these countries, such outbreaks are yet to be detected. Viral RNA and antibodies against dengue serotype-2 have recently been reported among individuals in some localities in the regional capital of Ghana. This is an indication of a possible silent transmission ongoing in the population. This study, therefore, investigated the entomological transmission risk of dengue, Zika and chikungunya viruses in a forest and domestic population in the Greater Accra Region, Ghana. All stages of the Aedes mosquito (egg, larvae, pupae and adults) were collected around homes and in the forest area for estimation of risk indices. All eggs were hatched and reared to larvae or adults for morphological identification together with larvae and adults collected from the field. The forest population had higher species richness with 7 Aedes species. The predominant species of Aedes mosquitoes identified from both sites was Aedes aegypti (98%). Aedes albopictus, an important arbovirus vector, was identified only in the peri-domestic population at a prevalence of 1.5%, significantly higher than previously reported. All risk indices were above the WHO threshold except the House Index for the domestic site which was moderate (19.8). The forest population recorded higher Positive Ovitrap (34.2% vs 26.6%) and Container (67.9% vs 36.8%) Indices than the peri-domestic population. Although none of the mosquito pools showed the presence of dengue, chikungunya or Zika viruses, all entomological risk indicators showed that both sites had a high potential arboviral disease transmission risk should any of these viruses be introduced. Continuous surveillance is recommended in these and other sites in the Metropolis to properly map transmission risk areas to inform outbreak preparedness strategies.


Assuntos
Aedes , Infecções por Arbovirus , Febre de Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Humanos , Adulto , Animais , Febre de Chikungunya/epidemiologia , Gana/epidemiologia , Mosquitos Vetores , Infecções por Arbovirus/epidemiologia , Infecção por Zika virus/epidemiologia , Florestas , Medição de Risco
2.
PLoS Negl Trop Dis ; 17(5): e0011397, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37256856

RESUMO

BACKGROUND: The study assessed the risk of transmission of Aedes-borne arboviruses in a community at Cape Coast during the Covid-19 restriction period in 2020 based on entomological indices. The spatial distribution of insecticide resistance was also assessed in Ae. aegypti population from Cape Coast. METHODS: Three larval indices were calculated from a household larval survey in 100 randomly selected houses. WHO susceptibility bioassay was performed on female adult Ae. aegypti that were reared from the larvae collected from household containers and other receptacles located outside houses against four insecticides. The mosquitoes were also screened for F1534C, V1016I, and V410L kdr mutations. RESULTS: The estimated larval indices in the study community were House index- 34%, Container index- 22.35%, and Breteau index- 2.02. The mosquito population was resistant to Deltamethrin (0.05%), DDT (4%), Fenitrothion (1%), and Bendiocarb (0.1%). A triple kdr mutation, F1534C, V410L and V1016I were detected in the mosquito population. CONCLUSION: The study found the risk of an outbreak of Aedes-borne diseases lower in the covid-19 lockdown period than before the pandemic period. The low risk was related to frequent clean-up exercises in the community during the Covid-19 restriction period. Multiple insecticide resistance couple with three kdr mutations detected in the study population could affect the effectiveness of control measures, especially in emergency situations. The study supports sanitation improvement as a tool to control Ae. aegypti and could complement insecticide-based tools in controlling this vector.


Assuntos
Aedes , Arbovírus , COVID-19 , Inseticidas , Piretrinas , Animais , Humanos , Feminino , Resistência a Inseticidas/genética , Aedes/genética , Gana , Controle de Doenças Transmissíveis , Inseticidas/farmacologia , Mutação , Surtos de Doenças , Mosquitos Vetores/genética
3.
J Med Entomol ; 59(6): 2090-2101, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36066455

RESUMO

The most widespread arboviral diseases such as Dengue, Chikungunya, and Zika are transmitted mainly by Aedes mosquitoes. Due to the lack of effective therapeutics for most of these diseases, vector control remains the most effective preventative and control measure. This study investigated and compared the species composition, insecticide susceptibility, and resistance mechanisms in Aedes mosquito populations from a forest reserve converted to an eco-park and a peri-domestic sites in urban Accra, Ghana. Immature Aedes were sampled from the study sites, raised to adults, and exposed to deltamethrin, permethrin, DDT, fenitrothion, bendiocarb, permethrin + PBO, and deltamethrin + PBO using WHO tube assays. Melting curve analyses were performed for F1536C, V1016I, and V410L genetic mutations in surviving and dead mosquitoes following exposure to deltamethrin and permethrin. Microplate assay was used to access enzyme activity levels in adult mosquitoes from both populations. Aedes aegypti was found to be the dominant species from both study populations. The susceptibility test results revealed a high frequency of resistance to all the insecticides except fenitrothion. F1534C mutations were observed in 100% and 97% of mosquitoes from the peri-domestic and forest population, respectively but were associated with pyrethroid resistance only in the forest population (P < 0.0001). For the first time in Aedes mosquitoes in Ghana, we report the existence V410L mutations, mostly under selection only in the forest population (HWE P < 0.0001) and conclude that Aedes vectors in urban Accra have developed resistance to many commonly used insecticides. This information is important for the formulation of vector control strategies for Aedes control in Ghana.


Assuntos
Aedes , Inseticidas , Piretrinas , Infecção por Zika virus , Zika virus , Animais , Resistência a Inseticidas/genética , Aedes/genética , Inseticidas/farmacologia , Permetrina , Fenitrotion , Gana , Mosquitos Vetores/genética , Mutação
4.
Sci Rep ; 11(1): 18658, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545153

RESUMO

A vertically transmitted microsporidian, Microsporidia MB, with the ability to disrupt Plasmodium development was reported in Anopheles arabiensis from Kenya, East Africa. To demonstrate its range of incidence, archived DNA samples from 7575 Anopheles mosquitoes collected from Ghana were screened. MB prevalence was observed at 1.8%. An. gambiae s.s constituted 87% of positive mosquitoes while the remaining were from An. coluzzii. Both sibling species had similar positivity rates (24% and 19%; p = 0.42) despite the significantly higher number of An. gambiae s.s analysed (An. gambiae s.s = 487; An. coluzzii = 94; p = 0.0005). The microsporidian was also more prevalent in emerged adults from field-collected larvae than field-caught adults (p < 0.0001) suggestive of an efficient vertical transmission and/or horizontal transfer among larvae. This is the first report of Microsporidia MB in Anopheles mosquitoes in West Africa. It indicates possible widespread among malaria vector species and warrants investigations into the symbiont's diversity across sub-Saharan Africa.


Assuntos
Anopheles/microbiologia , Microsporídios/genética , Microsporidiose/etiologia , Animais , Anopheles/genética , Anopheles/metabolismo , Vetores de Doenças , Gana/epidemiologia , Malária/transmissão , Microsporídios/metabolismo , Microsporidiose/metabolismo , Mosquitos Vetores/genética
5.
PLoS One ; 16(6): e0234675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34061882

RESUMO

Aedes-borne viral diseases mainly Yellow Fever (YF), Dengue (DEN), Zika (ZIK) and Chikungunya (CHK) have contributed to many deaths' in the world especially in Africa. There have been major outbreaks of these diseases in West Africa. Although, YF outbreaks have occurred in Ghana over the years, no outbreak of DEN, ZIK and CHK has been recorded. However, the risk of outbreak is high due to its proximity to West African countries where outbreaks have been recently been recorded. This study surveyed the mosquito fauna to assess the risk of transmission of Yellow fever (YFV), Dengue (DENV), Chikungunya (CHKV) and Zika (ZIKV) viruses in Larabanga and Mole Game Reserve areas in Northern Ghana. The immature and adult stages of Aedes mosquitoes were collected from Larabanga and Mole Game Reserve area. There was a significant (P>0.001) number of mosquitoes collected during the rainy season than the dry season. A total of 1,930 Aedes mosquitoes were collected during the rainy season and morphologically identified. Of these, 1,915 (99.22%) were Aedes aegypti and 15 (0.22%) were Aedes vittatus. During the dry season, 27 Ae. aegypti mosquitoes were collected. A total of 415 Ae. aegypti mosquitoes were molecularly identified to subspecies level of which Ae. (Ae) aegypti aegypti was the predominant subspecies. Both Ae. aegypti aegypti and Ae aegypti formosus exist in sympatry in the area. All Aedes pools (75) were negative for DENV, ZIKV and CHKV when examined by RT- PCR. Three Larval indices namely House Index, HI (percentage of houses positive for Aedes larvae or pupae), Container Index, CI (the percentage of containers positive for Aedes larvae or pupae) and Breteau Index, BI (number of positive containers per 100 houses inspected) were assessed as a measure for risk of transmission in the study area. The HI, CI and BI for both sites were as follows; Mole Game Reserve (HI, 42.1%, CI, 23.5% and BI, 100 for rainy season and 0 for all indices for dry season) and Larabanga (39%, 15.5% and 61 for rainy season and 2.3%, 1.3% and 2.3 for dry season). The spatial distribution of Aedes breeding sites in both areas indicated that Aedes larvae were breeding in areas with close proximity to humans. Lorry tires were the main source of Aedes larvae in all the study areas. Information about the species composition and the potential role of Aedes mosquitoes in future outbreaks of the diseases that they transmit is needed to design efficient surveillance and vector control tools.


Assuntos
Aedes/fisiologia , Aedes/virologia , Arbovírus/fisiologia , Animais , Gana , Risco
6.
J Med Entomol ; 57(4): 1239-1245, 2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32112094

RESUMO

Aedes aegypti (L.) (Diptera: Culicidae) is a diurnal feeder that lives in close association with human populations. It is the principal vector of yellow fever, dengue fever and the Zika Virus. Issues of arboviral diseases have been on the ascendency in most countries including Ghana where Aedes mosquito is the main vector of yellow fever. A comparative study of the biting behavior of Ae. aegypti and the identification of subspecies were undertaken using molecular technique. Standard human landing technique was used to collect both indoor and outdoor biting mosquitoes at three zones located in the Upper East (Bolgatanga), Upper West (Nadowli), and Northern (Damongo) Regions of Ghana during the dry and rainy seasons between 0600 and 1800 Greenwich Mean Time (GMT). All collected mosquitoes were identified morphologically using taxonomic keys. random amplified polymorphic DNA polymerase chain reaction was used to categorize Ae. aegypti into subspecies. Adult female Aedes mosquitoes identified formed 62% (n = 1,206) of all female mosquitoes collected. Aedes aegypti 98% and Aedes vittatus 2% were the only Aedes species identified. Bolgatanga recorded the largest number of Ae. aegypti 42%, whereas Nadowli 22% recorded the least. Aedes vittatus was observed in Nadowli. Aedes aegypti exhibited a bimodal biting behavior peaking at 0600-0800 GMT and 1500-1600 h GMT. Molecular findings revealed 69% Ae. aegypti aegypti and 31% Ae. aegypti formosus as the two subspecies (n = 110). This information is important for implementing effective vector control programs in the three regions of the northern Ghana.


Assuntos
Aedes/fisiologia , Mosquitos Vetores/fisiologia , Aedes/anatomia & histologia , Aedes/genética , Distribuição Animal , Animais , Gana , Mordeduras e Picadas de Insetos , Proteínas de Insetos/análise , Mosquitos Vetores/anatomia & histologia , Mosquitos Vetores/genética , Febre Amarela/transmissão
7.
Parasit Vectors ; 12(1): 299, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196222

RESUMO

BACKGROUND: Insecticide resistance of Anopheles gambiae (s.l.) against public health insecticides is increasingly reported in Ghana and need to be closely monitored. This study investigated the intensity of insecticide resistance of An. gambiae (s.l.) found in a vegetable growing area in Accra, Ghana, where insecticides, herbicides and fertilizers are massively used for plant protection. The bioefficacy of long-lasting insecticidal nets (LLINs) currently distributed in the country was also assessed to delimitate the impact of the insecticide resistance intensity on the effectiveness of those nets. METHODS: Three- to five-day-old adult mosquitoes that emerged from collected larvae from Opeibea, Accra (Ghana), were assayed using CDC bottle and WHO tube intensity assays against different insecticides. The Vgsc-L1014F and ace-1 mutations within the population were also characterized using PCR methods. Furthermore, cone bioassays against different types of LLINs were conducted to evaluate the extent and impact of the resistance of An. gambiae (s.l.) from Opeibea. RESULTS: Anopheles gambiae (s.l.) from Opeibea were resistant to all the insecticides tested with very low mortality observed against organochlorine, carbamates and pyrethroid insecticides using WHO susceptibility tests at diagnostic doses during three consecutive years of monitoring. The average frequencies of Vgsc-1014F and ace-1 in the An. gambiae (s.l.) population tested were 0.99 and 0.76, respectively. The intensity assays using both CDC bottle and WHO tubes showed high resistance intensity to pyrethroids and carbamates with survivals at 10× the diagnostic doses of the insecticides tested. Only pirimiphos methyl recorded a low resistance intensity with 100% mortality at 5× the diagnostic dose. The bioefficacy of pyrethroid LLINs ranged from 2.2 to 16.2% mortality while the PBO LLIN, PermaNet® 3.0, was 73%. CONCLUSIONS: WHO susceptibility tests using the diagnostic doses described the susceptibility status of the mosquito colony while CDC bottle and WHO tube intensity assays showed varying degrees of resistance intensity. Although both methods are not directly comparable, the indication of the resistance intensity showed the alarming insecticide resistance intensity in Opeibea and its surroundings, which could have an operational impact on the efficacy of vector control tools and particularly on pyrethroid LLINs.


Assuntos
Anopheles , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida/normas , Malária/prevenção & controle , Piretrinas , Agricultura , Animais , Bioensaio , Feminino , Gana/epidemiologia , Larva , Malária/epidemiologia , Controle de Mosquitos/métodos , Controle de Mosquitos/normas , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...