Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26938544

RESUMO

Foodborne diseases have large economic and societal impacts worldwide. To evaluate how the risks of foodborne diseases might change in response to climate change, credible and usable climate information tailored to the specific application question is needed. Global Climate Model (GCM) data generally need to, both, be downscaled to the scales of the application to be usable, and represent, well, the key characteristics that inflict health impacts. This study presents an evaluation of temperature-based heat indices for the Washington D.C. area derived from statistically downscaled GCM simulations for 1971-2000--a necessary step in establishing the credibility of these data. The indices approximate high weekly mean temperatures linked previously to occurrences of Salmonella infections. Due to bias-correction, included in the Asynchronous Regional Regression Model (ARRM) and the Bias Correction Constructed Analogs (BCCA) downscaling methods, the observed 30-year means of the heat indices were reproduced reasonably well. In April and May, however, some of the statistically downscaled data misrepresent the increase in the number of hot days towards the summer months. This study demonstrates the dependence of the outcomes to the selection of downscaled climate data and the potential for misinterpretation of future estimates of Salmonella infections.


Assuntos
Mudança Climática , Monitoramento Ambiental , Infecções por Salmonella/epidemiologia , Salmonella/isolamento & purificação , Clima , Temperatura Alta , Humanos , Modelos Teóricos , Fatores de Risco , Estações do Ano , Washington/epidemiologia
2.
Environmetrics ; 24(6): 418-432, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24223482

RESUMO

Concurrently high values of the maximum potential wind speed of updrafts (Wmax) and 0-6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd.

3.
Science ; 325(5945): 1236-9, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19729653

RESUMO

The temperature history of the first millennium C.E. is sparsely documented, especially in the Arctic. We present a synthesis of decadally resolved proxy temperature records from poleward of 60 degrees N covering the past 2000 years, which indicates that a pervasive cooling in progress 2000 years ago continued through the Middle Ages and into the Little Ice Age. A 2000-year transient climate simulation with the Community Climate System Model shows the same temperature sensitivity to changes in insolation as does our proxy reconstruction, supporting the inference that this long-term trend was caused by the steady orbitally driven reduction in summer insolation. The cooling trend was reversed during the 20th century, with four of the five warmest decades of our 2000-year-long reconstruction occurring between 1950 and 2000.

4.
Proc Natl Acad Sci U S A ; 104(10): 3713-8, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17360418

RESUMO

The potential role of solar variations in modulating recent climate has been debated for many decades and recent papers suggest that solar forcing may be less than previously believed. Because solar variability before the satellite period must be scaled from proxy data, large uncertainty exists about phase and magnitude of the forcing. We used a coupled climate system model to determine whether proxy-based irradiance series are capable of inducing climatic variations that resemble variations found in climate reconstructions, and if part of the previously estimated large range of past solar irradiance changes could be excluded. Transient simulations, covering the published range of solar irradiance estimates, were integrated from 850 AD to the present. Solar forcing as well as volcanic and anthropogenic forcing are detectable in the model results despite internal variability. The resulting climates are generally consistent with temperature reconstructions. Smaller, rather than larger, long-term trends in solar irradiance appear more plausible and produced modeled climates in better agreement with the range of Northern Hemisphere temperature proxy records both with respect to phase and magnitude. Despite the direct response of the model to solar forcing, even large solar irradiance change combined with realistic volcanic forcing over past centuries could not explain the late 20th century warming without inclusion of greenhouse gas forcing. Although solar and volcanic effects appear to dominate most of the slow climate variations within the past thousand years, the impacts of greenhouse gases have dominated since the second half of the last century.


Assuntos
Clima , Meio Ambiente , Poluição Ambiental , Gases , Efeito Estufa , Modelos Biológicos , Modelos Teóricos , Sistema Solar , Luz Solar , Temperatura
5.
Science ; 312(5773): 529; author reply 529, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16645079

RESUMO

von Storch et al. (Reports, 22 October 2004, p. 679) criticized the ability of the "hockey stick" climate field reconstruction method to yield realistic estimates of past variation in Northern Hemisphere temperature. However, their conclusion was based on incorrect implementation of the reconstruction procedure. Calibration was performed using detrended data, thus artificially removing a large fraction of the physical response to radiative forcing.

6.
Nature ; 426(6964): 274-8, 2003 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-14628048

RESUMO

Past studies have suggested a statistical connection between explosive volcanic eruptions and subsequent El Niño climate events. This connection, however, has remained controversial. Here we present support for a response of the El Niño/Southern Oscillation (ENSO) phenomenon to forcing from explosive volcanism by using two different palaeoclimate reconstructions of El Niño activity and two independent, proxy-based chronologies of explosive volcanic activity from ad 1649 to the present. We demonstrate a significant, multi-year, El Niño-like response to explosive tropical volcanic forcing over the past several centuries. The results imply roughly a doubling of the probability of an El Niño event occurring in the winter following a volcanic eruption. Our empirical findings shed light on how the tropical Pacific ocean-atmosphere system may respond to exogenous (both natural and anthropogenic) radiative forcing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...