Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 156: 383-394, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933696

RESUMO

The implementation, operation and decommissioning of stormwater management systems causes environmental damage, while at the same time reducing pollutant loads in receiving waters by treating stormwater. The focus in research has been either on assessing impacts caused by stormwater infrastructure, or risks associated with stormwater discharges, but rarely have these two sources of environmental impacts been combined to allow a comprehensive environmental evaluation of stormwater management. We assess the environmental sustainability of four different generic stormwater management systems for a catchment of 260ha by a) modelling the flow of pollutants in stormwater, and resulting point source emissions to freshwater, and b) quantifying emissions and resources for all relevant processes associated with the life cycle of the infrastructure. Using life cycle impact assessment, we quantify the resulting environmental impacts and consequent damage to two areas of protection - ecosystems (expressed in time-integrated species loss) and natural resource availability (expressed in extra costs for future resource extraction). Our assessment shows that combined stormwater management causes the highest damage to both ecosystems (1.4E-03 species.yr/yr) and resource availability (8.8E+03 USD/yr). Separate systems using only green infrastructure were found to avoid damage to resource availability (-3.7 to -5.2 USD/yr) and cause lower ecosystem damage (1.1-1.3E-03 species.yr/yr). Stormwater discharges contribute significantly to the total ecosystem damage of the different systems (36-88%), and the sustainability of separate systems can be further improved by optimizing the removal efficiency of low-tech elements like surface basins and filter soil. The systems are designed according to engineering standards. Choosing different criteria, e.g. identical flood safety levels, would result in substantial changes of the relative performance of the systems. The findings highlight the importance of including point source emissions into the assessment to allow comparative conclusions and minimisation of environmental damage of stormwater management.


Assuntos
Ecossistema , Chuva , Meio Ambiente , Inundações , Água Doce
2.
Sci Total Environ ; 663: 754-763, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738257

RESUMO

Stormwater carries pollutants that potentially cause negative environmental impacts to receiving water bodies, which can be quantified using life cycle impact assessment (LCIA). We compiled a list of 20 metals, almost 300 organic compounds, and nutrients potentially present in stormwater, and measured concentrations reported in literature. We calculated mean pollutant concentrations, which we then translated to generic impacts per litre of stormwater discharged, using existing LCIA characterisation factors. Freshwater and marine ecotoxicity impacts were found to be within the same order of magnitude (0.72, and 0.82 CTUe/l respectively), while eutrophication impacts were 3.2E-07 kgP-eq/l for freshwater and 2.0E-06 kgN-eq/l for marine waters. Stormwater discharges potentially have a strong contribution to ecotoxicity impacts compared to other human activities, such as human water consumption and agriculture. Conversely, contribution to aquatic eutrophication impacts was modest. Metals were identified as the main contributor to ecotoxicity impacts, causing >97% of the total impacts. This is in line with conclusions from a legal screening, where metals showed to be problematic when comparing measured concentrations against existing environmental quality standards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...