Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 29(6): 230-241, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253166

RESUMO

Bioreactor systems, for example, spinner flask and perfusion bioreactors, and cell-seeded three-dimensional (3D)-printed scaffolds are used in bone tissue engineering strategies to stimulate cells and produce bone tissue suitable for implantation into the patient. The construction of functional and clinically relevant bone graft using cell-seeded 3D-printed scaffolds within bioreactor systems is still a challenge. Bioreactor parameters, for example, fluid shear stress and nutrient transport, will crucially affect cell function on 3D-printed scaffolds. Therefore, fluid shear stress induced by spinner flask and perfusion bioreactors might differentially affect osteogenic responsiveness of pre-osteoblasts inside 3D-printed scaffolds. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine fluid shear stress and osteogenic responsiveness of MC3T3-E1 pre-osteoblasts seeded on the scaffolds in the bioreactors using finite element (FE)-modeling and experiments. FE-modeling was used to quantify wall shear stress (WSS) distribution and magnitude inside 3D-printed PCL scaffolds within spinner flask and perfusion bioreactors. MC3T3-E1 pre-osteoblasts were seeded on NaOH surface-modified 3D-printed PCL scaffolds, and cultured in customized static, spinner flask, and perfusion bioreactors up to 7 days. The scaffolds' physicochemical properties and pre-osteoblast function were assessed experimentally. FE-modeling showed that spinner flask and perfusion bioreactors locally affected WSS distribution and magnitude inside the scaffolds. The WSS distribution was more homogeneous inside scaffolds in perfusion than in spinner flask bioreactors. The average WSS on scaffold-strand surfaces ranged from 0 to 6.5 mPa for spinner flask bioreactors, and from 0 to 4.1 mPa for perfusion bioreactors. Surface modification of scaffolds by NaOH resulted in a surface with a honeycomb-like pattern and increased surface roughness (1.6-fold), but decreased water contact angle (0.3-fold). Both spinner flask and perfusion bioreactors increased cell spreading, proliferation, and distribution throughout the scaffolds. Perfusion, but not spinner flask bioreactors more strongly enhanced collagen (2.2-fold) and calcium deposition (2.1-fold) throughout the scaffolds after 7 days compared with static bioreactors, likely due to uniform WSS-induced mechanical stimulation of the cells revealed by FE-modeling. In conclusion, our findings indicate the importance of using accurate FE models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems. Impact Statement The success of cell-seeded three-dimensional (3D)-printed scaffolds depends on cell stimulation by biomechanical/biochemical factors to produce bone tissue suitable for implantation into the patient. We designed and fabricated surface-modified 3D-printed poly-ɛ-caprolactone (PCL) scaffolds, as well as static, spinner flask, and perfusion bioreactors to determine wall shear stress (WSS) and osteogenic responsiveness of pre-osteoblasts seeded on the scaffolds using finite element (FE)-modeling and experiments. We found that cell-seeded 3D-printed PCL scaffolds within perfusion bioreactors more strongly enhanced osteogenic activity than within spinner flask bioreactors. Our results indicate the importance of using accurate FE-models to estimate WSS and determine experimental conditions for designing cell-seeded 3D-printed scaffolds in bioreactor systems.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Hidróxido de Sódio , Engenharia Tecidual/métodos , Reatores Biológicos , Perfusão
2.
J Liposome Res ; 33(4): 392-409, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37171257

RESUMO

The main challenge of using nanoliposome systems is controlling their size and stability. In order to overcome this challenge, according to the research conducted at the Research Centre for New Technologies of Biological Engineering, University of Tehran, a model for predicting the size and stability of nanoliposome systems based on thermodynamic relations has been presented. In this model, by using the presented equations and without performing many experiments in the laboratory environment, the effect of temperature, ionic power and different pH can be considered simultaneously whereas examining the components of size, stability and any feature were considered before. Synthesis and application of liposomal nanocarriers in different operating conditions can be investigated and predicted, and due to the change in temperature and pH, the smallest size of th system can be obtained. In this study, we were able to model the synthesis and storage conditions of liposomal nanocarriers at different temperatures and acidic, neutral and alkaline pHs, based on the calculation of mathematical equations. This model also indicates that with increasing temperature, the radius increases but with increasing pH, the radius first increases and then decreases. Therefore, this model can be used to predict size and stability in different operating conditions. In fact, with this modelling method, there is no need to study through laboratory methods and analysis to determine the size, stability and surface loads, and in terms of Accuracy, time and cost savings are affordable.


Assuntos
Lipossomos , Temperatura , Concentração de Íons de Hidrogênio , Termodinâmica
3.
Mikrochim Acta ; 189(11): 439, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322195

RESUMO

Polyaniline nanocomposite with controllable properties was used to design and fabricate a novel electrochemical immunosensor for the early detection of type 2 diabetes. Insulin receptor antibody is a powerful predictor of type 2 diabetes development in individuals. A systematic study was carried out to investigate the effects of different polyaniline layers and the Nafion layer on the morphological, chemical, and electrochemical properties of nanocomposite immunosensor, especially the stability. The bioengineered Nafion-Au nanoparticles-polyaniline/gold electrode demonstrated outstanding electrocatalytic performance in the detection of insulin receptor antibodies with a high sensitivity (136.21 µA.ng-1.ml.cm-2) in a linear range from 0.001 to 200 ng.ml-1 as well as a low detection limit of 1.827 pg.ml-1, response time within 10 min, remarkable selectivity, and significant stability of 80 days. Therefore, the developed immunosensor is a suitable nanocomposite platform for insulin receptor antibody level determination in human plasma.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus Tipo 2 , Nanopartículas Metálicas , Nanocompostos , Humanos , Ouro/química , Técnicas Eletroquímicas , Receptor de Insulina , Limite de Detecção , Nanopartículas Metálicas/química , Imunoensaio , Diabetes Mellitus Tipo 2/diagnóstico , Nanocompostos/química , Biomarcadores
4.
Talanta ; 238(Pt 1): 122947, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34857352

RESUMO

An ultrasensitive novel electrochemical nano-biosensor for rapid detection of insulin antibodies against diabetes antigens was developed in this research. The presence of insulin antibodies has been demonstrated to be a strong predictor for the development of type 1 diabetes in individuals who do not have diabetes but are genetically predisposed. The proposed nano-biosensor fabrication process was based on the optimized sequential electropolymerization of polyaniline and electrodeposition of gold nanoparticles on the surface of the functionalized gold electrode. The morphological and chemical characterization of the modified electrode was studied by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and micro Raman spectroscopy. Moreover, the role of each component in the modification of the electrode was studied by electrochemical methods systematically. After immobilizing insulin antigen and blocking with bovine serum albumin, the nano-biosensor was used for determining different concentrations of insulin antibody under the optimal conditions. This nano-biosensor could respond to insulin antibody with a linear calibration range from 0.001 ng ml-1 to 1000 ng ml-1 with the detection limit of 0.017 pg ml-1 and 0.034 pg ml-1 and selectivity of 18.544 µA ng-1 ml.cm-2 and 31.808 µA ng-1 ml.cm-2 via differential pulse voltammetry and square wave voltammetry, respectively. This novel nano-biosensor exhibited a short response time, high sensitivity, and good reproducibility. It was successfully used in determining the insulin antibody in human samples with a standard error of less than 0.178. Therefore, the nano-biosensor has the potential for the application of early detection of type 1 diabetes. To our best knowledge, label-free electrochemical detection of insulin antibody based on immunosensor is developed for the first time.


Assuntos
Técnicas Biossensoriais , Insulinas , Nanopartículas Metálicas , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Imunoensaio , Anticorpos Anti-Insulina , Limite de Detecção , Reprodutibilidade dos Testes
5.
Regen Med ; 16(8): 757-774, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34431331

RESUMO

The ultimate goal of lung bioengineering is to produce transplantable lungs for human beings. Therefore, large-scale studies are of high importance. In this paper, we review the investigations on decellularization and recellularization of human-sized lung scaffolds. First, studies that introduce new ways to enhance the decellularization of large-scale lungs are reviewed, followed by the investigations on the xenogeneic sources of lung scaffolds. Then, decellularization and recellularization of diseased lung scaffolds are discussed to assess their usefulness for tissue engineering applications. Next, the use of stem cells in recellularizing acellular lung scaffolds is reviewed, followed by the case studies on the transplantation of bioengineered lungs. Finally, the remaining challenges are discussed, and future directions are highlighted.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Bioengenharia , Matriz Extracelular , Humanos , Pulmão , Células-Tronco
6.
J Mech Behav Biomed Mater ; 119: 104511, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915440

RESUMO

Current decellularization methods for articular cartilages require many steps, various and high amounts of detergents, and a relatively long time to produce decellularized scaffolds. In addition, such methods often damage the essential components and the structure of the tissue. This study aims to introduce a novel perfusion-based bioreactor (PBB) method to decellularize bovine articular cartilages efficiently while reducing the harmful physical and chemical steps as well as the duration of the process. This leads to better preservation of the structure and the essential components of the native tissue. Firstly, a certain number of channels (Ø 180 µm) were introduced into both sides of cylindrical articular bovine cartilage disks (5 mm in diameter and 1 mm in thickness). Next, the disks were decellularized in the PBB and a shaker as the control. Using the PBB method resulted in ∼90% reduction of DNA content in the specimens, which was significantly higher than those of the shaker results with ∼60%. Also, ∼50% sulfated glycosaminoglycan (sGAG) content and ∼92% of the compression properties were maintained implying the efficient preservation of the structure and components of the scaffolds. Moreover, the current study indicated that the PBB specimens supported the adherence and proliferation of the new cells effectively. In conclusion, the results show that the use of PBB method increases the efficiency of producing decellularized cartilage scaffolds with a better maintenance of essential components and structure, while reducing the chemicals and steps required for the process. This will pave the way for producing close-to-natural scaffolds for cartilage tissue engineering.


Assuntos
Cartilagem Articular , Animais , Reatores Biológicos , Bovinos , Matriz Extracelular , Perfusão , Engenharia Tecidual , Alicerces Teciduais
7.
Mater Sci Eng C Mater Biol Appl ; 122: 111938, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641926

RESUMO

The concept of providing tissue engineering scaffolds with natural physical properties and minimal immunogenicity has not been systematically approached for the lungs yet. Here, the rat acellular lung tissue (ALT) was cross-linked to provide either EDC/NHS cross-linked tissue (EDC/NHS-CLT) or tannic acid cross-linked tissue (TA-CLT). Young's modulus revealed that EDC/NHS-CLT had mechanical properties similar to the native lung and culture of lung mesenchymal cells showed a higher potential of cell proliferation on EDC/NHS-CLT versus TA-CLT and ALT. The in vitro immunogenicity tests showed a strong induction of T-cell proliferation by TA-CLT and an attenuated macrophage induction by TA-CLT. Processed rat lungs were implanted xenogenically into the mouse peritoneal cavity and the host-implant interactions showed that tannic acid is not released from TA-CLT in a physiologically effective dose. The profile of peritoneal fluid proinflammatory (TNFα, IL-1ß, IL-12p70 and IL-17) and anti-inflammatory (IL-10 and TGFß1) cytokines, and CD3+ T-lymphocytes and CD11b+ macrophages revealed that apart from induction of high levels of IL-17 during the first week and IL-10 during the second to third weeks after implantation by TA-CLT, other indicators of immune reactions to cross-linked tissues were not significantly different from ALT. Also, a high fibrotic reaction to TA-CLT was observed on the weeks 2-3, but alveolar structures were preserved in EDC/NHS-CLT. Our findings show that by controlled EDC/NHS cross-linking, an acellular lung scaffold could be provided with mechanical properties similar to native lung, which promotes mesenchymal lung cells proliferation and does not stimulate recipient's immune system more than a non-cross-linked tissue.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Animais , Reagentes de Ligações Cruzadas , Pulmão , Camundongos , Ratos , Alicerces Teciduais
8.
Biotechnol Bioeng ; 118(6): 2142-2167, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629350

RESUMO

Lung bioengineering has emerged to resolve the current lung transplantation limitations and risks, including the shortage of donor organs and the high rejection rate of transplanted lungs. One of the most critical elements of lung bioengineering is bioreactors. Bioreactors with different applications have been developed in the last decade for lung bioengineering approaches, aiming to produce functional reproducible tissue constructs. Here, the current status and advances made in the development and application of bioreactors for bioengineering lungs are comprehensively reviewed. First, bioreactor design criteria are explained, followed by a discussion on using bioreactors as a culture system for scalable expansion and proliferation of lung cells, such as producing epithelial cells from induced pluripotent stem cells (iPSCs). Next, bioreactor systems facilitating and improving decellularization and recellularization of lung tissues are discussed, highlighting the studies that developed bioreactors for producing engineered human-sized lungs. Then, monitoring bioreactors are reviewed, showing their ability to evaluate and optimize the culture conditions for maturing engineered lung tissues, followed by an explanation on the ability of ex vivo lung perfusion systems for reconditioning the lungs before transplantation. After that, lung cancer studies simplified by bioreactors are discussed, showing the potentials of bioreactors in lung disease modeling. Finally, other platforms with the potential of facilitating lung bioengineering are described, including the in vivo bioreactors and lung-on-a-chip models. In the end, concluding remarks and future directions are put forward to accelerate lung bioengineering using bioreactors.


Assuntos
Reatores Biológicos , Pulmão/crescimento & desenvolvimento , Engenharia Tecidual , Animais , Humanos
9.
Iran Biomed J ; 25(2): 78-87, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33461289

RESUMO

Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using three-dimensional printing (3DP). Herein, we aimed to determine whether the much tighter control of microstructure of 3DP poly(lactic-co-glycolic) acid/ß-tricalcium phosphate (PLGA/ß-TCP) scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods: Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results: TThe 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. Alkaline phosphatase (ALP) activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion: The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/ß-TCP scaffolds are possibly more favorable for bone formation.


Assuntos
Regeneração Óssea/fisiologia , Osteoblastos/citologia , Osteogênese , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Animais , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Linhagem Celular , Forma Celular/efeitos dos fármacos , Colágeno/farmacologia , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Porosidade , Impressão Tridimensional
10.
J Biomech ; 110: 109920, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32827778

RESUMO

Biomaterial based reconstruction is still the most commonly employed method of small bone defect reconstruction. Bone tissue-engineered techniques are improving, and adjuncts such as vascularization technologies allow re-evaluation of traditional reconstructive methods for healingofcritical-sized bone defect. Slow infiltration rate of vasculogenesis after cell-seeded scaffold implantation limits the use of clinically relevant large-sized scaffolds. Hence, in vitro vascularization within the tissue-engineered bone before implantation is required to overcome the serious challenge of low cell survival rate after implantation which affects bone tissue regeneration and osseointegration. Mechanobiological interactions between cells and microvascular mechanics regulate biological processes regarding cell behavior. In addition, load-bearing scaffolds demand mechanical stability properties after vascularization to have adequate strength while implanted. With the advent of bioreactors, vascularization has been greatly improved by biomechanical regulation of stem cell differentiation through fluid-induced shear stress and synergizing osteogenic and angiogenic differentiation in multispecies coculture cells. The benefits of vascularization are clear: avoidance of mass transfer limitation and oxygen deprivation, a significant decrease in cell necrosis, and consequently bone development, regeneration and remodeling. Here, we discuss specific techniques to avoid pitfalls and optimize vascularization results of tissue-engineered bone. Cell source, scaffold modifications and bioreactor design, and technique specifics all play a critical role in this new, and rapidly growing method for bone defect reconstruction. Given the crucial importance of long-term survival of vascular network in physiological function of 3D engineered-bone constructs, greater knowledge of vascularization approaches may lead to the development of new strategies towards stabilization of formed vascular structure.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Fenômenos Biomecânicos , Osso e Ossos , Neovascularização Fisiológica , Osteogênese
11.
Comput Biol Med ; 124: 103826, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798924

RESUMO

Fluid flow dynamics and oxygen-concentration in 3D-printed scaffolds within perfusion bioreactors are sensitive to controllable bioreactor parameters such as inlet flow rate. Here we aimed to determine fluid flow dynamics, oxygen-concentration, and cell proliferation and distribution in 3D-printed scaffolds as a result of different inlet flow rates of perfusion bioreactors using experiments and finite element modeling. Pre-osteoblasts were treated with 1 h pulsating fluid flow with low (0.8 Pa; PFFlow) or high peak shear stress (6.5 Pa; PFFhigh), and nitric oxide (NO) production was measured to validate shear stress sensitivity. Computational analysis was performed to determine fluid flow between 3D-scaffold-strands at three inlet flow rates (0.02, 0.1, 0.5 ml/min) during 5 days. MC3T3-E1 pre-osteoblast proliferation, matrix production, and oxygen-consumption in response to fluid flow in 3D-printed scaffolds inside a perfusion bioreactor were experimentally assessed. PFFhigh more strongly stimulated NO production by pre-osteoblasts than PFFlow. 3D-simulation demonstrated that dependent on inlet flow rate, fluid velocity reached a maximum (50-1200 µm/s) between scaffold-strands, and fluid shear stress (0.5-4 mPa) and wall shear stress (0.5-20 mPa) on scaffold-strands surfaces. At all inlet flow rates, gauge fluid pressure and oxygen-concentration were similar. The simulated cell proliferation and distribution, and oxygen-concentration data were in good agreement with the experimental results. In conclusion, varying a perfusion bioreactor's inlet flow rate locally affects fluid velocity, fluid shear stress, and wall shear stress inside 3D-printed scaffolds, but not gauge fluid pressure, and oxygen-concentration, which seems crucial for optimized bone tissue engineering strategies using bioreactors, scaffolds, and cells.


Assuntos
Reatores Biológicos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Baías , Perfusão
12.
J Mech Behav Biomed Mater ; 104: 103638, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174396

RESUMO

In bone tissue engineering, prediction of forces induced to the native bone during normal functioning is important in the design, fabrication, and integration of a scaffold with the host. The aim of this study was to customize the mechanical properties of a layer-by-layer 3D-printed poly(ϵ-caprolactone) (PCL) scaffold estimated by finite element (FE) modeling in order to match the requirements of the defect, to prevent mechanical failure, and ensure optimal integration with the surrounding tissue. Forces and torques induced on the mandibular symphysis during jaw opening and closing were predicted by FE modeling. Based on the predicted forces, homogeneous-structured PCL scaffolds with 3 different void sizes (0.3, 0.6, and 0.9 mm) were designed and 3D-printed using an extrusion based 3D-bioprinter. In addition, 2 gradient-structured scaffolds were designed and 3D-printed. The first gradient scaffold contained 2 regions (0.3 mm and 0.6 mm void size in the upper and lower half, respectively), whereas the second gradient scaffold contained 3 regions (void sizes of 0.3, 0.6, and 0.9 mm in the upper, middle and lower third, respectively). Scaffolds were tested for their compressive and tensile strength in the upper and lower halves. The actual void size of the homogeneous scaffolds with designed void size of 0.3, 0.6, and 0.9 mm was 0.20, 0.59, and 0.95 mm, respectively. FE modeling showed that during opening and closing of the jaw, the highest force induced on the symphysis was a compressive force in the transverse direction. The compressive force was induced throughout the symphyseal line and reduced from top (362.5 N, compressive force) to bottom (107.5 N, tensile force) of the symphysis. Compressive and tensile strength of homogeneous scaffolds decreased by 1.4-fold to 3-fold with increasing scaffold void size. Both gradient scaffolds had higher compressive strength in the upper half (2 region-gradient scaffold: 4.9 MPa; 3 region-gradient scaffold: 4.1 MPa) compared with the lower half (2 region-gradient scaffold: 2.5 MPa; 3 region-gradient scaffold: 2.7 MPa) of the scaffold. 3D-printed PCL scaffolds had higher compressive strength in the scaffold layer-by-layer building direction compared with the side direction, and a very low tensile strength in the scaffold layer-by-layer building direction. Fluid shear stress and fluid pressure distribution in the gradient scaffolds were more homogeneous than in the 0.3 mm void size scaffold and similar to the 0.6 mm and 0.9 mm void size scaffolds. In conclusion, these data show that the mechanical properties of 3D-printed PCL scaffolds can be tailored based on the predicted forces on the mandibular symphysis. These 3D-printed PCL scaffolds had different mechanical properties in scaffold building direction compared with the side direction, which should be taken into account when placing the scaffold in the defect site. Our findings might have implications for improved performance and integration of scaffolds with native tissue.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Caproatos , Força Compressiva , Lactonas , Mandíbula , Poliésteres , Porosidade , Impressão Tridimensional
13.
Cell J ; 22(3): 293-301, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31863654

RESUMO

OBJECTIVE: This study investigated whether short stimulation (30 minutes) of human adipose stem cells (hASCs) with 1,25-dihydroxyvitamin D3 (calcitriol or 1,25-(OH)2VitD3), fitting within the surgical procedure time frame, suffices to induce osteogenic differentiation, and compared this with continuous treatment with 1,25-(OH)2VitD3. MATERIALS AND METHODS: In this experimental study, hASCs were pretreated with/without 10 nM calcitriol for 30 minutes, seeded on biphasic calcium phosphate (BCP), and cultured for 3 weeks with/without 1,25-(OH)2VitD3. Cell attachment was determined 30 minutes after cell seeding. AlamarBlue assay, alkaline phosphatase (ALP) assay, ALP staining, real-time polymerase chain reaction (PCR), and protein assay were used to evaluate the effect of short calcitriol pretreatment on proliferation and osteogenic differentiation of hASCs up to 3 weeks. RESULTS: Pretreatment with 1,25-(OH)2VitD3 enhanced the attachment of hASCs to BCP by 1.5-fold compared to nontreated cells and increased the proliferation by 3.5-fold at day 14, and 2.6-fold at day 21. In contrast, continuous treatment increased the proliferation by 1.7-fold only at day 14. After 2 weeks, ALP activity was increased by 18.5-fold when hASCs were pretreated with 1,25-(OH)2VitD3 for 30 minutes but increased only 2.6-fold when compared with its continuous counterpart. Moreover, after 14 days, pretreatment resulted in significant upregulation of the osteogenic markers RUNX2 and SPARC by 3.6-fold and 2.2-fold, respectively, while this was not observed upon continuous treatment. Finally, 30 minutes pretreatment of hASCs with 1,25-(OH)2VitD3 increased VEGF189 expression, which may contribute to the process of angiogenesis. CONCLUSION: This study is the first research showing that 30 minutes pretreatment of hASCs with 1,25-(OH)2VitD3, not only enhanced cell attachment to the scaffold at seeding time, but also promoted the proliferation and osteogenic differentiation of hASCs more strongly than continuous treatment, suggesting that short pre-treatment with 1,25-(OH)2VitD3 is a promising approach for the regeneration of bones in a one-step surgical procedure.

14.
Mater Sci Eng C Mater Biol Appl ; 103: 109782, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349523

RESUMO

Achieving a high cell density of animal cells is a prerequisite for different medical applications such as cell therapy, tissue engineering, and vaccine production. Microcarrier-based cell culture has been proved to be a promising method to attain this purpose mainly due to providing a high surface area to volume ratio. Adhesion and harvesting of cells to and from microcarriers are two critical stages influencing final cell productivity and quality. Low attachment efficiency or non-uniform initial cell distribution onto microcarriers' surfaces lead to the waste of inoculum and achievement of cellular yields less than expected. In other side, inappropriate detachment procedure decreases cell recovery along with having adverse effects on cell viability and behavior. In this review, a comprehensive study on these crucial steps is presented. In the attachment section, cellular mechanisms involved in the attachment process are briefly discussed. Due to the key role of microcarrier surface characteristics in cell attachment and behavior, the chemistry and physical features of various microcarrier surfaces are studied in detail. Then, the influence of seeding conditions on cell attachment is reviewed. In the detachment section, chemical harvesting methods are described initially followed by mechanical detachment. Finally, thermo-responsive microcarriers are discussed in detail. At the end of each section, current challenges and future directions are highlighted.


Assuntos
Técnicas de Cultura de Células/métodos , Microesferas , Animais , Adesão Celular , Técnicas de Cultura de Células/instrumentação , Meios de Cultura/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Propriedades de Superfície , Temperatura
15.
J Diabetes Metab Disord ; 18(2): 341-348, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890659

RESUMO

OBJECTIVES: In this paper, the effect of the position of the inlet and outlet microchannels on the flow profile and the geometry of the recognition chamber for sample pre-treatment in an electrochemical biosensor to be used in osteoporosis management were investigated. METHODS: All numerical computation presented in this work were performed using COMSOL Multiphysics and Fluent. Simulation was performed for a three-dimensional, incompressible Navier-Stokes flow and so explicit biphasic volume of fluid (VOF) equations were used. RESULTS: In the designed microfluidic system, a pressure-driven laminar flow with no-slip boundary condition was responsible for fluid actuation through microchannels in a reproducible approach. Based on the simulation results, the number of outlets was increased and the angel through which the inlets and outlets were attached to the microchamber was changed so that the dead volume would be eliminated and the fluid flow trajectory, the velocity field and pressure were evenly distributed across the chamber. The Re number in the inlets was equal to 4.41, suggesting a laminar flow at this site. CONCLUSION: The simulation results along with the fact that the design change was tested using laser ablated tape and a color dye at different steps provided the researchers with the opportunity to study the changes in a fast and accurate but cheap method. The absence of backflow helps with the cross-talk concern in the channels and the lack of bubbles and complete coverage of the chamber helps with a better surface modification and thus better sensing performance.

16.
Biomed Mater ; 14(1): 015008, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30421722

RESUMO

In bone tissue engineering, the intrinsic hydrophobicity and surface smoothness of three-dimensional (3D)-printed poly(ε-caprolactone) scaffolds hamper cell attachment, proliferation and differentiation. This intrinsic hydrophobicity of poly(ε-caprolactone) can be overcome by surface modifications, such as surface chemical modification or immobilization of biologically active molecules on the surface. Moreover, surface chemical modification may alter surface smoothness. Whether surface chemical modification or immobilization of a biologically active molecule on the surface is more effective to enhance pre-osteoblast proliferation and differentiation is currently unknown. Therefore, we aimed to investigate the osteogenic response of MC3T3-E1 pre-osteoblasts to chemically surface-modified and RGD-immobilized 3D-printed poly(ε-caprolactone) scaffolds. Poly(ε-caprolactone) scaffolds were 3D-printed consisting of strands deposited layer by layer with alternating 0°/90° lay-down pattern. 3D-printed poly(ε-caprolactone) scaffolds were surface-modified by either chemical modification using 3 M sodium hydroxide (NaOH) for 24 or 72 h, or by RGD-immobilization. Strands were visualized by scanning electron microscopy. MC3T3-E1 pre-osteoblasts were seeded onto the scaffolds and cultured up to 14 d. The strands of the unmodified poly(ε-caprolactone) scaffold had a smooth surface. NaOH treatment changed the scaffold surface topography from smooth to a honeycomb-like surface pattern, while RGD immobilization did not alter the surface topography. MC3T3-E1 pre-osteoblast seeding efficiency was similar (44%-54%) on all scaffolds after 12 h. Cell proliferation increased from day 1 to day 14 in unmodified controls (1.9-fold), 24 h NaOH-treated scaffolds (3-fold), 72 h NaOH-treated scaffolds (2.2-fold), and RGD-immobilized scaffolds (4.5-fold). At day 14, increased collagenous matrix deposition was achieved only on 24 h NaOH-treated (1.8-fold) and RGD-immobilized (2.2-fold) scaffolds compared to unmodified controls. Moreover, 24 h, but not 72 h, NaOH-treated scaffolds, increased alkaline phosphatase activity by 5-fold, while the increase by RGD immobilization was only 2.5-fold. Only 24 h NaOH-treated scaffolds enhanced mineralization (2.0-fold) compared to unmodified controls. In conclusion, RGD immobilization (0.011 µg mg-1 scaffold) on the surface and 24 h NaOH treatment of the surface of 3D-printed PCL scaffold both enhance pre-osteoblast proliferation and matrix deposition while only 24 h NaOH treatment results in increased osteogenic activity, making it the treatment of choice to promote bone formation by osteogenic cells.


Assuntos
Cálcio/química , Oligopeptídeos/química , Osteoblastos/metabolismo , Poliésteres/química , Alicerces Teciduais/química , Células 3T3 , Animais , Osso e Ossos , Caproatos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Lactonas , Camundongos , Osteogênese/fisiologia , Impressão Tridimensional , Engenharia Tecidual
17.
Mater Sci Eng C Mater Biol Appl ; 93: 790-799, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274113

RESUMO

OBJECTIVE: Bone tissue engineering (BTE) faces a major challenge with cell viability after implantation of a construct due to lack of functional vasculature within the implant. Human bone marrow derived mesenchymal stem cells (hBMSCs) have the potential to undergo transdifferentiation towards an endothelial cell phenotype, which may be appropriate for BTE in conjunction with the appropriate scaffolds and microenvironment. HYPOTHESIS AND METHODS: We hypothesized that slow delivery of vascular endothelial growth factor (VEGF) by using nanoparticles in combination with osteogenic stimuli might enhance both osteogenic and angiogenic differentiation of angiogenic primed hBMSCs cultured in an osteogenic microenvironment. Therefore, we developed a new strategy to enhance vascularization in BTE in vitro by synthesis of smart temperature sensitive poly(N­isopropylacrylamide) (PNIPAM) nanoparticles. We used PNIPAM nanoparticles loaded with collagen to investigate their ability to deliver VEGF for both angiogenic and osteogenic differentiation. RESULTS: We used the free radical polymerization technique to synthesize PNIPAM nanoparticles, which had particle sizes of approximately 100 nm at 37 °C and LCST of 30-32 °C. The cumulative VEGF release after 72 h for VEGF loaded PNIPAM (VEGF-PNIPAM) nanoparticles was 70%; for VEGF-PNIPAM loaded collagen hydrogels, it was 23%, which indicated slower release of VEGF in the VEGF-PNIPAM loaded collagen system. Immunocytochemistry (ICC) and inverted microscope visualization confirmed endothelial differentiation and capillary-like tube formation in the osteogenic culture medium after 14 days. Quantitative real-time polymerase chain reaction (QRT-PCR) also confirmed expressions of collagen type I (Col I), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) osteogenic markers along with expressions of platelet-endothelial cell adhesion molecule-1 (CD31), von Willebrand factor (vWF), and kinase insert domain receptor (KDR) angiogenic markers. Our data clearly showed that VEGF released from PNIPAM nanoparticles and VEGF-PNIPAM loaded collagen hydrogel could significantly contribute to the quality of engineered bone tissue.


Assuntos
Células da Medula Óssea/metabolismo , Portadores de Fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular , Células da Medula Óssea/citologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/farmacologia
18.
Tissue Eng Part C Methods ; 24(4): 197-204, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29336215

RESUMO

Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.


Assuntos
Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Pulmão/citologia , Alicerces Teciduais , Animais , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Oxigênio/metabolismo , Ratos , Engenharia Tecidual
19.
Sci Rep ; 7(1): 16070, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167431

RESUMO

This study was designed to obtain covalently coupled conjugates as means for achieving higher stability and better coverage of the AuNPs by antibodies on the particle surface suitable for sensor performance enhancement. Starting by using a modified protocol, colloid gold solution, with mean AuNP core size of ~6 nm was synthesized. The protocol used for conjugation of AuNPs to osteocalcin antibody in this study relies on covalent and electrostatic attractions between constituents. Varieties of conjugates with varying combinations of crosslinkers and different concentrations were successfully synthesized. The obtained products were characterized and their properties were studied to determine the best candidate in sense of antibody - antigen reactivity. Using AuNP-GSH-NHS-Ab combination (1:1:1), the tertiary structure of the protein was maintained and thus the antibody remained functional in the future steps. This one-pot method provided a simple method for covalently coupling antibodies on the particle surface while keeping their functionality intact. The AuNP content of the solution also accelerated electron transfer rate and thus amplifies the detection signal. With the developed and discussed technique herein, a simple solution is modeled to be used for measuring serum levels of biomarkers in single and/or multiplexed sensor systems.


Assuntos
Anticorpos/metabolismo , Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Ouro/química , Nanopartículas Metálicas/química , Difusão Dinâmica da Luz , Nanopartículas Metálicas/ultraestrutura , Nanoconjugados/química , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta
20.
3 Biotech ; 7(5): 312, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28955609

RESUMO

This article explains a step-wise protocol to develop an electrochemical sensor to quantify serum levels of C-telopeptide (CTX) crosslinks also known as crosslaps in a matter of minutes and with high level of accuracy. The technique needs only one-step (incubation) and can thus be used for point of care screening. Due to the excellent electrical properties of the as-prepared immunosensor, CTX levels were successfully measured from 1 to 1000 pg/mL. This is while the normal reference of the marker is 50-450 pg/mL, suggesting that the sensor can acceptably detect CTX. The results also showed a good correlation with ECLIA in measuring serum levels of CTX.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...