Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 30(4): 669-684, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30671891

RESUMO

A major goal of proteomics research is the accurate and sensitive identification and quantification of a broad range of proteins within a sample. Data-independent acquisition (DIA) approaches that acquire MS/MS spectra independently of precursor information have been developed to overcome the reproducibility challenges of data-dependent acquisition and the limited breadth of targeted proteomics strategies. Typical DIA implementations use wide MS/MS isolation windows to acquire comprehensive fragment ion data. However, wide isolation windows produce highly chimeric spectra, limiting the achievable sensitivity and accuracy of quantification and identification. Here, we present a DIA strategy in which spectra are collected with overlapping (rather than adjacent or random) windows and then computationally demultiplexed. This approach improves precursor selectivity by nearly a factor of 2, without incurring any loss in mass range, mass resolution, chromatographic resolution, scan speed, or other key acquisition parameters. We demonstrate a 64% improvement in sensitivity and a 17% improvement in peptides detected in a 6-protein bovine mix spiked into a yeast background. To confirm the method's applicability to a realistic biological experiment, we also analyze the regulation of the proteasome in yeast grown in rapamycin and show that DIA experiments with overlapping windows can help elucidate its adaptation toward the degradation of oxidatively damaged proteins. Our integrated computational and experimental DIA strategy is compatible with any DIA-capable instrument. The computational demultiplexing algorithm required to analyze the data has been made available as part of the open-source proteomics software tools Skyline and msconvert (Proteowizard), making it easy to apply as part of standard proteomics workflows. Graphical Abstract.

2.
Proc Natl Acad Sci U S A ; 112(37): 11508-13, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26330611

RESUMO

The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies. We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Algoritmos , Animais , Entropia , Temperatura Alta , Modelos Neurológicos , Modelos Estatísticos , Método de Monte Carlo , Rede Nervosa , Probabilidade , Reprodutibilidade dos Testes , Retina/fisiologia , Termodinâmica , Urodelos
3.
Mol Cell Proteomics ; 14(10): 2800-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26199342

RESUMO

Accurate knowledge of retention time (RT) in liquid chromatography-based mass spectrometry data facilitates peptide identification, quantification, and multiplexing in targeted and discovery-based workflows. Retention time prediction is particularly important for peptide analysis in emerging data-independent acquisition (DIA) experiments such as SWATH-MS. The indexed RT approach, iRT, uses synthetic spiked-in peptide standards (SiRT) to set RT to a unit-less scale, allowing for normalization of peptide RT between different samples and chromatographic set-ups. The obligatory use of SiRTs can be costly and complicates comparisons and data integration if standards are not included in every sample. Reliance on SiRTs also prevents the inclusion of archived mass spectrometry data for generation of the peptide assay libraries central to targeted DIA-MS data analysis. We have identified a set of peptide sequences that are conserved across most eukaryotic species, termed Common internal Retention Time standards (CiRT). In a series of tests to support the appropriateness of the CiRT-based method, we show: (1) the CiRT peptides normalized RT in human, yeast, and mouse cell lysate derived peptide assay libraries and enabled merging of archived libraries for expanded DIA-MS quantitative applications; (2) CiRTs predicted RT in SWATH-MS data within a 2-min margin of error for the majority of peptides; and (3) normalization of RT using the CiRT peptides enabled the accurate SWATH-MS-based quantification of 340 synthetic isotopically labeled peptides that were spiked into either human or yeast cell lysate. To automate and facilitate the use of these CiRT peptide lists or other custom user-defined internal RT reference peptides in DIA workflows, an algorithm was designed to automatically select a high-quality subset of datapoints for robust linear alignment of RT for use. Implementations of this algorithm are available for the OpenSWATH and Skyline platforms. Thus, CiRT peptides can be used alone or as a complement to SiRTs for RT normalization across peptide spectral libraries and in quantitative DIA-MS studies.


Assuntos
Espectrometria de Massas/normas , Peptídeos/análise , Proteômica/normas , Animais , Linhagem Celular , Cromatografia Líquida , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Camundongos , Biblioteca de Peptídeos , Proteômica/métodos , Fatores de Tempo , Leveduras
4.
Nat Protoc ; 10(3): 426-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25675208

RESUMO

Targeted proteomics by selected/multiple reaction monitoring (S/MRM) or, on a larger scale, by SWATH (sequential window acquisition of all theoretical spectra) MS (mass spectrometry) typically relies on spectral reference libraries for peptide identification. Quality and coverage of these libraries are therefore of crucial importance for the performance of the methods. Here we present a detailed protocol that has been successfully used to build high-quality, extensive reference libraries supporting targeted proteomics by SWATH MS. We describe each step of the process, including data acquisition by discovery proteomics, assertion of peptide-spectrum matches (PSMs), generation of consensus spectra and compilation of MS coordinates that uniquely define each targeted peptide. Crucial steps such as false discovery rate (FDR) control, retention time normalization and handling of post-translationally modified peptides are detailed. Finally, we show how to use the library to extract SWATH data with the open-source software Skyline. The protocol takes 2-3 d to complete, depending on the extent of the library and the computational resources available.


Assuntos
Técnicas de Química Combinatória/métodos , Biblioteca de Peptídeos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
5.
PLoS Comput Biol ; 10(1): e1003408, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391485

RESUMO

Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.


Assuntos
Retina/patologia , Células Receptoras Sensoriais/citologia , Urodelos/fisiologia , Potenciais de Ação/fisiologia , Animais , Biologia Computacional , Entropia , Peixes , Modelos Neurológicos , Movimento , Rede Nervosa/fisiologia , Probabilidade
6.
Front Comput Neurosci ; 7: 137, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24187539

RESUMO

Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power-bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices.

7.
Proc Natl Acad Sci U S A ; 110(19): 7580-5, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610435

RESUMO

Metastasis requires the penetration of cancer cells through tight spaces, which is mediated by the physical properties of the cells as well as their interactions with the confined environment. Various microfluidic approaches have been devised to mimic traversal in vitro by measuring the time required for cells to pass through a constriction. Although a cell's passage time is expected to depend on its deformability, measurements from existing approaches are confounded by a cell's size and its frictional properties with the channel wall. Here, we introduce a device that enables the precise measurement of (i) the size of a single cell, given by its buoyant mass, (ii) the velocity of the cell entering a constricted microchannel (entry velocity), and (iii) the velocity of the cell as it transits through the constriction (transit velocity). Changing the deformability of the cell by perturbing its cytoskeleton primarily alters the entry velocity, whereas changing the surface friction by immobilizing positive charges on the constriction's walls primarily alters the transit velocity, indicating that these parameters can give insight into the factors affecting the passage of each cell. When accounting for cell buoyant mass, we find that cells possessing higher metastatic potential exhibit faster entry velocities than cells with lower metastatic potential. We additionally find that some cell types with higher metastatic potential exhibit greater than expected changes in transit velocities, suggesting that not only the increased deformability but reduced friction may be a factor in enabling invasive cancer cells to efficiently squeeze through tight spaces.


Assuntos
Forma Celular , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias/patologia , Animais , Técnicas Biossensoriais , Linhagem Celular Tumoral , Tamanho Celular , Citoesqueleto/metabolismo , Fibroblastos/citologia , Fricção , Humanos , Camundongos , Microfluídica , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Polietilenoglicóis/química , Propriedades de Superfície
8.
J Neurosci ; 32(43): 14859-73, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23100409

RESUMO

Recording simultaneously from essentially all of the relevant neurons in a local circuit is crucial to understand how they collectively represent information. Here we show that the combination of a large, dense multielectrode array and a novel, mostly automated spike-sorting algorithm allowed us to record simultaneously from a highly overlapping population of >200 ganglion cells in the salamander retina. By combining these methods with labeling and imaging, we showed that up to 95% of the ganglion cells over the area of the array were recorded. By measuring the coverage of visual space by the receptive fields of the recorded cells, we concluded that our technique captured a neural population that forms an essentially complete representation of a region of visual space. This completeness allowed us to determine the spatial layout of different cell types as well as identify a novel group of ganglion cells that responded reliably to a set of naturalistic and artificial stimuli but had no measurable receptive field. Thus, our method allows unprecedented access to the complete neural representation of visual information, a crucial step for the understanding of population coding in sensory systems.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Retina/citologia , Algoritmos , Animais , Análise por Conglomerados , Dextranos/metabolismo , Eletrodos , Larva , Neurônios/citologia , Estimulação Luminosa , Rodaminas/metabolismo , Urodelos , Campos Visuais , Vias Visuais
10.
J Neurophysiol ; 108(4): 1069-88, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22539825

RESUMO

We explored the manner in which spatial information is encoded by retinal ganglion cell populations. We flashed a set of 36 shape stimuli onto the tiger salamander retina and used different decoding algorithms to read out information from a population of 162 ganglion cells. We compared the discrimination performance of linear decoders, which ignore correlation induced by common stimulation, with nonlinear decoders, which can accurately model these correlations. Similar to previous studies, decoders that ignored correlation suffered only a modest drop in discrimination performance for groups of up to ∼30 cells. However, for more realistic groups of 100+ cells, we found order-of-magnitude differences in the error rate. We also compared decoders that used only the presence of a single spike from each cell with more complex decoders that included information from multiple spike counts and multiple time bins. More complex decoders substantially outperformed simpler decoders, showing the importance of spike timing information. Particularly effective was the first spike latency representation, which allowed zero discrimination errors for the majority of shape stimuli. Furthermore, the performance of nonlinear decoders showed even greater enhancement compared with linear decoders for these complex representations. Finally, decoders that approximated the correlation structure in the population by matching all pairwise correlations with a maximum entropy model fit to all 162 neurons were quite successful, especially for the spike latency representation. Together, these results suggest a picture in which linear decoders allow a coarse categorization of shape stimuli, whereas nonlinear decoders, which take advantage of both correlation and spike timing, are needed to achieve high-fidelity discrimination.


Assuntos
Potenciais de Ação/fisiologia , Discriminação Psicológica/fisiologia , Percepção de Forma/fisiologia , Estimulação Luminosa/métodos , Células Ganglionares da Retina/fisiologia , Ambystoma , Animais
11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 2): 036704, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16605695

RESUMO

Complex rays and polynomial phase functions are used to numerically solve the Helmholtz equation in a realistic two-dimensional smoothly varying heterogeneous velocity model with multiple adjacent cusp caustics. Together these two methods allow the determination of global uniformly asymptotic solutions in the presence of arbitrarily many caustics. Two algorithms are introduced to this end: a two-point ray tracing algorithm for complex rays and a perturbation method for constructing polynomial phase functions. Model representation in complex space is performed via discrete cosine transform analysis. Geometrical and uniformly asymptotic solutions are computed for a linear layer test model as well as a velocity model from Yucca Mountain.

12.
Appl Opt ; 42(25): 5130-5, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12962392

RESUMO

The point-spread function and emissivity are calculated for a mirror made from regular hexagonal segments of just a few different sizes. A mirror of this type has many similar segments, which is an advantage for manufacturing, and for an approximately f/1 mirror with > or = 1000 segments and > or = 4 sizes of regular hexagons the increase in intersegment gap area is negligible. This result raises the possibility of making a mirror from very large numbers of identical small segments that are warped to the required figure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...