Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35564236

RESUMO

ZnO is a well-known semiconducting material showing a wide bandgap and an n-type intrinsic behavior of high interest in applications such as transparent electronics, piezoelectricity, optoelectronics, and photovoltaics. This semiconductor becomes even more attractive when doped with a few atomic percent of a transition metal. Indeed, e.g., the introduction of substitutional Co atoms in ZnO (ZCO) induces the appearance of room temperature ferromagnetism (RT-FM) and magneto-optical effects, making this material one of the most important representatives of so-called dilute magnetic semiconductors (DMSs). In the present review, we discuss the magnetic and magneto-optical properties of Co-doped ZnO thin films by considering also the significant improvements in the properties induced by post-growth irradiation with atomic hydrogen. We also show how all of these properties can be accounted for by a theoretical model based on the formation of Co-VO (oxygen vacancy) complexes and the concurrent presence of shallow donor defects, thus giving a sound support to this model to explain the RT-FM in ZCO DMSs.

2.
Phys Chem Chem Phys ; 19(2): 1449-1457, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27982139

RESUMO

A number of studies have investigated the properties of monomeric and double-decker phthalocyanines (Pcs) adsorbed on metal surfaces, in view of applications in spintronics devices. In a combined experimental and theoretical study, we consider here a different member of the Pcs family, the (RuPc)2 dimer, whose structure is characterized by two paired up magnetic centers embedded in a double-decker architecture. For (RuPc)2 on Ag(111), we show that this architecture works as a preserving cage by shielding the Ru-Ru pair from a direct interaction with the surface atoms. In fact, while noticeable surface-to-molecule charge transfer occurs with the ensuing quenching of the molecular magnetic moment, such phenomena occur here in the absence of a direct Ru-Ag coupling or structural rearrangement, at variance with other Pcs and thanks to the above shielding effect. These unique properties of the (RuPc)2 architecture are expected to permit an easy control of the surface-to-molecule charge-transfer process as well as of the molecular magnetic properties, thus making the (RuPc)2 dimer a significant paradigm for innovative "cage" structures as well as a promising candidate for applications in spintronics nano or single-molecule devices.

3.
J Am Chem Soc ; 135(41): 15353-63, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24044778

RESUMO

The in-depth understanding of the molecular mechanisms regulating the water oxidation catalysis is of key relevance for the rationalization and the design of efficient oxygen evolution catalysts based on earth-abundant transition metals. Performing ab initio DFT+U molecular dynamics calculations of cluster models in explicit water solution, we provide insight into the pathways for oxygen evolution of a cobalt-based catalyst (CoCat). The fast motion of protons at the CoCat/water interface and the occurrence of cubane-like Co-oxo units at the catalyst boundaries are the keys to unlock the fast formation of O-O bonds. Along the resulting pathways, we identified the formation of Co(IV)-oxyl species as the driving ingredient for the activation of the catalytic mechanism, followed by their geminal coupling with O atoms coordinated by the same Co. Concurrent nucleophilic attack of water molecules coming directly from the water solution is discouraged by high activation barriers. The achieved results suggest also interesting similarities between the CoCat and the Mn4Ca-oxo oxygen evolving complex of photosystem II.


Assuntos
Cobalto/química , Oxigênio/química , Catálise , Simulação de Dinâmica Molecular , Teoria Quântica , Água/química
4.
Phys Chem Chem Phys ; 13(34): 15437-41, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21808773

RESUMO

Ab initio molecular dynamics simulations of a recently proposed cobalt-based catalyst for water oxidation provide insight into the properties of protons at the water/oxide interface. Calculations and X-ray absorption spectroscopy data indicate a cubane-like structure of the catalyst, support the occurrence of protonated µ(2)-O atoms, suggest deprotonated µ(3)-O atoms and the presence of sites promoting low-barrier hydrogen bonds.


Assuntos
Cobalto/química , Simulação de Dinâmica Molecular , Óxidos/química , Água/química , Espectroscopia por Absorção de Raios X/métodos , Catálise , Oxirredução , Prótons
5.
J Am Chem Soc ; 128(42): 13772-80, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17044705

RESUMO

The structural, electronic, and vibrational properties of intermediates of the O(2) photoreduction at the (101) TiO(2) (anatase) surface have been investigated by performing ab initio density functional calculations. In detail, a recently proposed approach has been used where molecules on the surface are treated like surface defects. Thus, by applying theoretical methods generally used in the physics of semiconductors, we successfully estimate the location and donor/acceptor character of the electronic levels induced by an adsorbed molecule in the TiO(2) energy gap, both crucial for the surface-molecule charge-transfer processes, and investigate the formation and the properties of charged intermediates. The present approach permits a view of the O(2) photoreduction process through several facets, which elucidates the molecule-surface charge-transfer conditions and reveals the key role played by charged intermediates. A comparison of present results with those of a highly sensitive IR (infrared) spectroscopy study of intermediates of the O(2) photoreduction leads to a deeper understanding of this process and to revised vibrational-line assignments and reaction paths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...