Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20714, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001117

RESUMO

Trimethylsilyl cellulose (TMSC) was employed as the coating matrix for the application of zinc oxide nanoparticles (ZnO) onto paper surfaces and the protections of ZnO/TMSC coating against UV-induced damages and fungal spoilage were evaluated. Filter papers were immersed in 2% w/v TMSC solution loaded with ZnO and air-dried. Three ZnO/TMSC suspensions were prepared with 0.1, 0.5, and 1% w/v ZnO NPs. The presences of ZnO/TMSC protective layers were confirmed with ATR-IR spectroscopy. The coated papers exhibited high surface hydrophobicities. After the coated papers were subject to 365-nm UV irradiation at 400 W for 3 h, the contact angles dramatically dropped. The trimethylsilyl (TMS) groups exposed on the surface formed a moisture barrier and were partially removed on UV exposure. ATR-IR revealed that more TMS groups were removed in the protective layer with no ZnO. UV-irradiated papers turned yellow and papers protected with 1% ZnO/TMSC exhibited significantly lower color changes than that of the uncoated one. Compared to the TMSC-coated paper, the addition of ZnO resulted in a significant reduction in tensile strength at maximum. However, after UV irradiation, significant increases in both the strain at break and strength at maximum were only observed in 1% ZnO/TMSC-protected papers. Regarding their anti-fungal properties, the 1% ZnO/TMSC films were effective in growth inhibitions of Aspergillus sp. and Penicillium sp. on the nonirradiated papers. Despite being hydrophilic after UV-irradiation, growths of the molds were severely suppressed on the UV-irradiated paper.


Assuntos
Nanopartículas , Óxido de Zinco , Celulose/farmacologia , Celulose/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas/química , Resistência à Tração , Interações Hidrofóbicas e Hidrofílicas
2.
ACS Appl Mater Interfaces ; 14(3): 3726-3739, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35014252

RESUMO

The path to greater sustainability and the development of polymeric drug delivery systems requires innovative approaches. The adaptation and use of biobased materials for applications such as targeted therapeutic delivery is, therefore, in high demand. A crucial part of this relates to the development of porous and hollow structures that are biocompatible, pH-responsive, deliver active substances, and contribute to pain relief, wound healing, tissue regeneration, and so forth. In this study, we developed a facile single-step and water-based method for the fabrication of hollow spherical cellulose beads for targeted drug release in response to external pH stimuli. Through base-catalyzed deprotection, hydrophobic solid and spherical cellulose acetate beads are transformed into hydrophilic cellulose structures with a hollow interior (wall thickness: 150 µm and inner diameter: 650 µm) by a stepwise increment of temperature and treatment time. Besides the pH-responsive fluid uptake properties, the hollow cellulose structures exhibit a maximum encapsulation efficiency of 20-85% diclofenac (DCF), a nonsteroidal anti-inflammatory drug, used commonly to treat pain and inflammatory diseases. The maximum amount of DCF released in vitro increased from 20 to 100% when the pH of the release medium increased from pH 1.2 to 7.4. As for the DCF release patterns and kinetic models at specific pH values, the release showed a diffusion- and swelling-controlled profile, effortlessly fine-tuned by external environmental pH stimuli. Overall, we show that the modified beads exhibit excellent characteristics for transport across the gastrointestinal tract and enhance the bioavailability of the drug. Their therapeutic efficacy and biocompatibility are also evident from the studies on human fibroblast cells. We anticipate that this platform could support and inspire the development of novel sustainable and effective polysaccharide-based delivery systems.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Materiais Biocompatíveis/química , Celulose/química , Diclofenaco/farmacologia , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Anti-Inflamatórios não Esteroides/química , Diclofenaco/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
3.
Polymers (Basel) ; 13(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477520

RESUMO

Ultrafine fully vulcanized powdered natural rubber (UFPNR) has a promising application as a renewable toughening modifier in polymer matrices. In this work, the effects of acrylate coagents, which had different amounts of functional groups, on properties of UFPNR produced by radiation vulcanization and spray-drying was systematically investigated for the first time. Dipropylene glycol diacrylate (DPGDA), trimethylol propane trimethaacrylate (TMPTMA), and ditrimethylol propane tetraacrylate (DTMPTA) were used as coagents with two, three, and four acrylate groups, respectively. The radiation in the range of 250 to 400 kGy and coagent contents of up to 11 phr were used in the production process. Physical, chemical, and thermal properties of the UFPNR were characterized by swelling analysis, scanning electron microscopy, infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The properties of UFPNR produced by using different type and content of coagents were compared and discussed. The results revealed that UFPNR with the smallest particle size of 3.6 ± 1.1 µm and the highest thermal stability (Td5 = 349 °C) could be obtained by using DTMPTA, which had the highest amount of functional group. It was proposed that the coagent with the greater number of acrylate groups enhanced the crosslinking of natural rubber as it had more reactive groups. Finally, an application of UFPNR as a toughening filler in rigid PVC was demonstrated with 34% improvement of impact strength.

4.
ACS Omega ; 5(45): 29243-29256, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225155

RESUMO

Herein, colloidal dispersions of alkaline nanoparticles (NPs: CaCO3 and Mg(OH)2) are stabilized by trimethylsilyl cellulose (TMSC) in hexamethyldisiloxane and employed to treat historical wood pulp paper by an effortless dip-coating technique. Both alkaline NPs exhibit high stability and no size and shape changes upon stabilization with the polymer, as shown by UV-vis spectroscopy and transmission electron microscopy. The long-term effect of NP/TMSC coatings is investigated in detail using accelerated aging. The results from the pH-test and back-titration of coated papers show a complete acid neutralization (pH ∼ 7.4) and introduction of adequate alkaline reserve even after prolonged accelerated aging. Scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and infrared and water contact angle measurements showed the introduction of a thin and smooth hydrophobic NP/TMSC coating on the paper fibers. Acid-catalyzed desilylation of TMSC was observed by declining C-Si infrared absorbance peaks upon aging. The CaCO3 coatings are superior to Mg(OH)2 with respect to a reduced yellowing and lower cellulose degradation upon aging as shown by colorimetric measurements and degree of polymerization analysis. The tensile strength and folding endurance of coated and aged papers are improved to 200-300 and 50-70% as illustrated by tensile strength and double folding endurance measurements.

5.
Nano Converg ; 7(1): 5, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32064551

RESUMO

Gold particles have been widely used in the treatment of prostate cancer due to their unique optical properties, such as their light-heat conversion in response to near-infrared radiation. Due to well-defined synthesis mechanisms and simple manufacturing methods, gold particles have been fabricated in various sizes and shapes. However, the low photothermal transduction efficiency in their present form is a major obstacle to practical and therapeutic uses of these particles. In the current work, we present a silica-coated gold nanoparticle cluster to address the therapeutic limit of single gold nanoparticles (AuNPs) and use its photothermal effect for treatment against PC-3, a typical prostate cancer. Due to its specific nanostructure, this gold nanocluster showed three times higher photothermal transduction efficiency than free single AuNPs. Moreover, while free single particles easily clump and lose optical properties, this silica-coated cluster form remained stable for a longer time in a given medium. In photothermal tests under near-infrared radiation, the excellent therapeutic efficacy of gold nanoclusters, referred to as AuNC@SiO2, was observed in a preclinical sample. Only the samples with both injected nanoclusters followed by photothermal treatment showed completely degraded tumors after 15 days. Due to the unique intrinsic biocompatibility and higher therapeutic effect of these silica-coated gold nanoclusters, they may contribute to enhancement of therapeutic efficacy against prostate cancer.

6.
Langmuir ; 34(43): 12827-12833, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30350682

RESUMO

The magnetic properties of nanoparticles make them ideal for using in various applications, especially in biomedical applications. However, the magnetic force generated by a single nanoparticle is low. Herein, we describe the development of nanocomplexes (size of 100 nm) of many iron oxide nanoparticles (IONPs) encapsulated in poly(lactic- co-glycolic acid) (PLGA) using the simple method of emulsion solvent evaporation. The response of the IONP-encapsulated PLGA nanocomplexes (IPNs) to an external magnetic field could be controlled by modifying the amount of IONPs loaded into each nanocomplex. In a constant size of IPNs, larger loading numbers of IONPs resulted in more rapid responses to a magnetic field. In addition, nanocomplexes were coated with a silica layer to facilitate the addition of fluorescent dyes. This allowed visualization of the responses of the IPNs to an applied magnetic field corresponding to the IONP loading amount. We envision that these versatile, easy-to-fabricate IPNs with controllable magnetism will have important potential applications in diverse fields.

7.
Langmuir ; 34(8): 2774-2783, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29431451

RESUMO

A novel and simple method for the fabrication of gold nanoparticle (AuNP) clusters was introduced for use as an efficient near-infrared (NIR) photothermal agent. Cationic surfactants were employed to assemble AuNPs into clusters, during which polyvinylpyrrolidone (PVP) was used to stabilize the AuNP clusters. Through this manner, AuNP clusters with a uniform shape and a narrow size distribution (55.4 ± 5.0 nm by electron microscope) were successfully obtained. A mechanism for the formation of AuNP clusters was studied and proposed. Electrostatic interactions between AuNPs and cationic surfactants, hydrophobic interactions between hydrocarbon chains of cationic surfactants, and repulsive steric interactions of PVP were found to play an important role with regard to the formation mechanism. Photothermal effect in the NIR range of the AuNP clusters was demonstrated; results presented a highly efficient photothermal conversion (with a maximum η of 65%) of the AuNP clusters. The clusters could be easily coated by a silica layer, enabling their biocompatibility and colloidal stability in physiological fluids. The easy-to-fabricate AuNP clusters showed high potential of use as an NIR photothermal agent for cancer therapy.

8.
Sci Rep ; 7(1): 13499, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044199

RESUMO

Since the delivery kinetics of different cell types are different, the signal from the target cell is greatly affected by the noise signal of the diagnostic system. This is a major obstacle hindering the practical application of intracellular diagnostic systems, such as tumor heterogeneity. To address these issues, here we present a microRNA detection platform using fluorescence-encoded nanostructured DNA-based probes. The nanostructured DNA was designed to include molecular beacons for detecting cytosolic microRNA as well as additional fluorophores. When the intracellular diagnostic system is delivered, fluorescence signals are generated by the molecular beacons, depending on the concentration of the target microRNA. The fluorescence signals are then normalized to the intensity of the additional fluorophore. Through this simple calculation, the concentration of intracellular microRNA can be determined without interference from the diagnosis system itself. And also it enabled discrimination of microRNA expression heterogeneity in five different breast cancer cell lines.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos , DNA/química , MicroRNAs/análise , Nanoestruturas/química , Biomarcadores Tumorais/genética , Corantes Fluorescentes/química , Heterogeneidade Genética , Humanos , Células MCF-7 , MicroRNAs/genética
9.
ChemMedChem ; 12(1): 28-32, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27943553

RESUMO

A stem cell tracking system is in high demand for the determination of cell destinations and for the validation of cell therapeutic efficacy in regenerative transplantation. To date, near-infrared (NIR) imaging technology has received considerable attention in cell behavior monitoring, owing to its patient compatibility, easy accessibility and cost effectiveness. Conventionally, in vivo cell tracking has been visualized by direct in-cell staining with NIR, where it may be achieved by complicated genetic engineering. Such genetic amendment techniques have suffered from serious challenges, which can destroy a cell's metabolism and can accidentally incur unexpected carcinoma. Herein we demonstrate a novel cell nano-modulation method for noninvasive stem cell monitoring. It is simply achieved by conjugating stem cells with lipid-supported, NIR-tagged, polymeric nanoparticles. These engineered cells, which are designated as NIR-labeled light-emitting stem cells (LESCs), maintain their biochemical functionality (i.e., differentiation, quantum efficacy, etc.) even after conjugation. LESCs were used for in situ stem cell monitoring at inoculation sites. It is speculated that the LESC technique could provide a new preparative methodology for in vivo cell tracking in advanced diagnostic medicine, where cell behavior is a critical issue.


Assuntos
Rastreamento de Células , Raios Infravermelhos , Nanopartículas/química , Polímeros/química , Células-Tronco/citologia , Humanos
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 122: 186-92, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24309181

RESUMO

Uniform spherical palladium nanoparticles with an average particle size of 4.3±0.5 nm were successfully synthesized by reducing H2PdCl4 with intermediates in situ generated during a successive acidic/alkaline treatment of sucrose. A successive acidic/alkaline treatment plays an important role on converting the non-reducing sucrose into efficient reducing species containing aldehyde functionality. The Benedict's test corroborates the development and vanishing of the in situ generated reducing species upon prolonged degradation. An increase in alkalinity drastically improves the reduction efficiency. ATR FT-IR spectroscopy indicated spontaneous development of carboxylate after the alkaline treatment. Under the employed condition, small organic species with carbonyl groups (aldehyde, acid, and acid salt) were generated through the sucrose degradation before being oxidized to carbonate after an hour of the treatment. Sucrose was completely decomposed into carbonate after a 24-h successive acidic/alkaline treatment. The synthesized palladium nanoparticles express a good catalytic activity in the decolorization process of Congo red by sodium borohydride.


Assuntos
Ácido Clorídrico/química , Nanopartículas Metálicas/química , Paládio/química , Substâncias Redutoras/química , Hidróxido de Sódio/química , Sacarose/química , Boroidretos/química , Catálise , Cor , Vermelho Congo/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...