Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 7(32): 51082-51095, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27322774

RESUMO

Aberrant Wnt signaling and control of anti-apoptotic mechanisms are pivotal features in different types of cancer to undergo cell death programs. The intracellular human enzyme Paraoxonase-2 (PON2) is known to have anti-apoptotic properties in leukemia and oral squamous cell cancer (OSCC) cells. However, the distinct regulating pathways are poorly understood. First, we present a so far unknown regulation of PON2 protein expression through the Wnt/GSK3ß/ß-catenin pathway in leukemia and OSCC cells. This was confirmed via in silico analysis, promoter reporter studies and treatment of multiple cell lines (K562, SCC-4, PCI-13) with different Wnt ligands/inhibitors in vitro. Ex vivo analysis of OSCC patients revealed a correlation between PON2 and ß-catenin expression in tumor tissue. Higher PON2 expression in OSCC is associated with relapse independently of treatment (e.g. surgery/radio-/chemotherapy). These results emphasize the clinical impact of the newly described regulation of PON2 through Wnt/GSK3ß/ß-catenin. More importantly, the study revealed the fundamental finding of an overall Wnt/GSK3ß/ß-catenin dependent regulation of PON2 in different cancers, which was confirmed by systematic and multimethodological approaches. Thus, the herein presented mechanistic insight contributes to a better understanding of tumor specific escape from cell death strategies and suggests PON2 as a new potential biomarker for therapy resistance or as a prognostic tumor marker.


Assuntos
Arildialquilfosfatase/genética , Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Tolerância a Radiação/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Apoptose/genética , Apoptose/efeitos da radiação , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/radioterapia , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana , Humanos , Células K562 , Neoplasias Bucais/radioterapia , Via de Sinalização Wnt/fisiologia
2.
J Lipids ; 2012: 352857, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570791

RESUMO

The pathogen Pseudomonas aeruginosa causes serious damage in immunocompromised patients by secretion of various virulence factors, among them the quorum sensing N-(3-oxododecanoyl)-L-homoserine lactone (3OC12) and the redox-active pyocyanin (PCN). Paraoxonase-2 (PON2) may protect against P. aeruginosa infections, as it efficiently inactivates 3OC12 and diminishes PCN-induced oxidative stress. This defense could be circumvented because 3OC12 mediates intracellular Ca(2+)-rise in host cells, which causes rapid inactivation and degradation of PON2. Importantly, we recently found that the PON2 paralogue PON3 prevents mitochondrial radical formation. Here we investigated its role as additional potential defense mechanism against P. aeruginosa infections. Our studies demonstrate that PON3 diminished PCN-induced oxidative stress. Moreover, it showed clear anti-inflammatory potential by protecting against NF-κB activation and IL-8 release. The latter similarly applied to PON2. Furthermore, we observed a Ca(2+)-mediated inactivation and degradation of PON3, again in accordance with previous findings for PON2. Our results suggest that the anti-oxidative and anti-inflammatory functions of PON2 and PON3 are an important part of our innate defense system against P. aeruginosa infections. Furthermore, we conclude that P. aeruginosa circumvents PON3 protection by the same pathway as for PON2. This may help identifying underlying mechanisms in order to sustain the protection afforded by these enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...