Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18853, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344741

RESUMO

Climate change will have an impact on not only flood magnitude but also on flood timing. This paper studies the shifting in flood timing at 6167 gauging stations from 1970 to 2010, globally. The shift in flood timing and its relationship with three influential factors (maximum 7-day precipitation, soil moisture excess, and snowmelt) are investigated. There is a clear global pattern in the mean flooding date: winter (Dec-Feb) across the western Coastal America, western Europe and the Mediterranean region, summer (Jun-Aug) in the north America, the Alps, Indian Peninsula, central Asia, Japan, and austral summer (Dec-Feb) in south Africa and north Australia area. The shift in flood timing has a trend from - 22 days per decade (earlier) to 28 days per decade (delayed). Earlier floods were found extensively in the north America, Europe and northeast Australia while delayed floods were prevailing in the Amazon, Cerrado, south Africa, India and Japan. Earlier flood timing in the north America and Europe was caused by earlier snowmelt while delayed extreme soil moisture excess and precipitation have jointly led to delayed floods around the monsoon zone, including south Africa, India and Japan. This study provides an insight on the shifting mechanism of flood timing, and supports decisions on the global flood mitigation and the impact from future climate change.


Assuntos
Mudança Climática , Inundações , Estações do Ano , Solo , Previsões
2.
Nat Commun ; 11(1): 6289, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323939

RESUMO

Future climate projections show a marked increase in Greenland Ice Sheet (GrIS) runoff during the 21st century, a direct consequence of the Polar Amplification signal. Regional climate models (RCMs) are a widely used tool to downscale ensembles of projections from global climate models (GCMs) to assess the impact of global warming on GrIS melt and sea level rise contribution. Initial results of the CMIP6 GCM model intercomparison project have revealed a greater 21st century temperature rise than in CMIP5 models. However, so far very little is known about the subsequent impacts on the future GrIS surface melt and therefore sea level rise contribution. Here, we show that the total GrIS sea level rise contribution from surface mass loss in our high-resolution (15 km) regional climate projections is 17.8  ±  7.8 cm in SSP585, 7.9 cm more than in our RCP8.5 simulations using CMIP5 input. We identify a +1.3 °C greater Arctic Amplification and associated cloud and sea ice feedbacks in the CMIP6 SSP585 scenario as the main drivers. Additionally, an assessment of the GrIS sea level contribution across all emission scenarios highlights, that the GrIS mass loss in CMIP6 is equivalent to a CMIP5 scenario with twice the global radiative forcing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...