Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 484(2): 456-460, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28137585

RESUMO

The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps are integral membrane proteins that catalyze the active transport of Ca2+ into the sarcoplasmic reticulum, thereby eliciting muscle relaxation. SERCA pumps are highly susceptible to oxidative damage, and cytoprotection of SERCA dampens thermal inactivation and is a viable therapeutic strategy in combating diseases where SERCA activity is impaired, such as muscular dystrophy. Here, we sought to determine whether increasing the percent of saturated fatty acids (SFA) within SERCA's lipid annulus through diet could protect SERCA pumps from thermal inactivation. Female Wistar rats were fed either a semi-purified control diet (AIN93G, 7% soybean oil by weight) or a modified AIN93G diet containing high SFA (20% lard by weight) for 17 weeks. Soleus muscles were extracted and SERCA lipid annulus and activity under thermal stress were analyzed. Our results show that SERCA's lipid annulus is abundant with short-chain (12-14 carbon) fatty acids, which corresponds well with SERCA's predicted bilayer thickness of 21 Å. Under control-fed conditions, SERCA's lipid annulus was already highly saturated (79%), and high-fat feeding did not increase this any further. High-fat feeding did not mitigate the reductions in SERCA activity seen with thermal stress; however, correlational analyses revealed significant and strong associations between % SFA and thermal stability of SERCA activity with greater %SFA being associated with lower thermal inactivation and greater % polyunsaturation and unsaturation index being associated with increased thermal inactivation. Altogether, these findings show that SERCA's lipid annulus may influence its susceptibility to oxidative damage, which could have implications in muscular dystrophy and age-related muscle wasting.


Assuntos
Metabolismo dos Lipídeos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Feminino , Resposta ao Choque Térmico , Músculo Esquelético/enzimologia , Ratos , Ratos Wistar
2.
Lipids ; 50(6): 605-10, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25920746

RESUMO

Previous work has shown that dietary lipids alter femur lipid composition. Specifically, we have shown that exposure to high saturated fatty acid (SFA) diets in utero, during suckling, or post-weaning alters femur total lipid composition, resulting in higher percent bone mass in males and females and bone mineral density (BMD) in female offspring with no effect on bone mineral outcomes in dams. Comparatively, high n-3 polyunsaturated fatty acid (PUFA) diets increase femur polar (PL) lipid n-3 content, which has been associated with increased bone mineral content and strength. However, the extent that PL or triacylglycerol (TAG) lipids change with high SFA diets is unknown. The current investigation examined the influence of a high SFA diet (20 % lard by weight) on femur PL and TAG lipid composition in 5-month old female Wistar rats (fed high SFA diet from age 28 days onwards; dams) and their 19-day old offspring (exposed to high SFA in utero and during suckling; pups). High SFA exposure resulted in increased monounsaturates and decreased n-3 and n-6 PUFA in the TAG fraction in both dams and pups, and higher SFA and n-6:n-3 ratio in dams only. The PL fraction showed decreased n-6 PUFA in both dams and pups. The magnitude of the diet-mediated responses, specifically TAG 18:1 and PL n-6 PUFA, may have contributed to the previously reported altered BMD, which was supported with correlation analysis. Future research should investigate the relationship of diet-induced changes in bone lipids on bone structure, as quantified through micro-computed tomography.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Fêmur/química , Metabolismo dos Lipídeos , Lipídeos/química , Triglicerídeos/química , Animais , Animais Recém-Nascidos , Feminino , Fêmur/metabolismo , Mães , Ratos Wistar , Triglicerídeos/metabolismo
3.
Molecules ; 18(12): 15094-109, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24322493

RESUMO

High fat diets adversely affect body composition, bone mineral and strength, and alter bone fatty acid composition. It is unclear if maternal high fat (HF) feeding permanently alters offspring body composition and bone health. Female rats were fed control (CON) or HF diet for 10 weeks, bred, and continued their diets throughout pregnancy and lactation. Male and female offspring were studied at weaning and 3 months, following consumption of CON diet. At weaning, but not 3 months of age, male and female offspring from dams fed HF diet had lower lean mass and higher fat and bone mass, and higher femur bone mineral density (females only) than offspring of dams fed CON diet. Male and female offspring femurs from dams fed HF diet had higher monounsaturates and lower n6 polyunsaturates at weaning than offspring from dams fed CON diet, where females from dams fed HF diet had higher saturates and lower n6 polyunsaturates at 3 months of age. There were no differences in strength of femurs or lumbar vertebrae at 3 months of age in either male or female offspring. In conclusion, maternal HF feeding did not permanently affect body composition and bone health at young adulthood in offspring.


Assuntos
Composição Corporal , Osso e Ossos/metabolismo , Dieta Hiperlipídica , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Peso Corporal , Densidade Óssea , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Feminino , Hormônios/sangue , Masculino , Exposição Materna/efeitos adversos , Gravidez , Ratos , Ratos Wistar , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...