Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-10, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897196

RESUMO

COVID-19 is a deadly pandemic caused by Corona virus leading to millions of deaths worldwide. Till today no medicine was available to cure this disease. This study selected 262 potential bioactive natural products derived from mangroves to inhibit the main protease (Mpro) and receptor-binding domain (RBD) protein of the COVID-19 virus. All the ligands were subjected to Adsorption Digestion Metabolism Excretion and Toxicity (ADMET) predictions and docking studies using AutodockVina. Among all the ligands, NP_143 (Shearinine A) and NP_242 (Amentoflavone), having the highest docking score of 10.2 and 10.1 Kj/mole, respectively, were picked for 100 ns of Molecular Dynamics using GROMACS. The trajectories generated were used to estimate Root mean square deviation (RMSD), Root mean square fluctuations (RMSF), Radius of Gyrations (RG), Solvent accessible surface area (SASA), and Hydrogen bonds. From the data generated, both the ligands have good binding ability at the active site of Mpro protein and do not deviate much. They have strong interactions with the amino acids during the 100 ns of simulations and can thus be considered potential drug candidates.Communicated by Ramaswamy H. Sarma.


HIGHLIGHTSSARS-CoV-2 Mpro plays a pivotal role in viral replication and serves as important drug target.Bioactive compounds of mangroves origin are promising source of antiviral drugs.ADMET and docking study explored two lead compounds from mangroves against Mpro.MD simulation validated ligands of lead compounds had stronger binding affinity with Mpro.

2.
J Biomol Struct Dyn ; 41(23): 13696-13706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995111

RESUMO

The work presents a library of piperine derivatives as potential inhibitors of the main protease protein (Mpro) functionality using Docking Studies, Molecular Dynamics (MD) Simulations and Absolute Binding Free-Energy calculations. 342 ligands were selected for this work and docked with Mpro protein. Among all the ligands studied, PIPC270, PIPC299, PIPC252, PIPC63, PIPC311 were the top five docked conformations having significant hydrogen bonding and hydrophobic interactions inside the active pocket of Mpro. These top five ligands were subjected to MD simulations for 100 ns using GROMACS. Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA) and hydrogen bond analysis revealed that the ligands bounded to protein remain stable without significant deviations during the course of MD simulations. Absolute binding free energy (ΔGb) was calculated for theses complexes and found that the ligand PIPC299 shows the prevalent binding affinity with binding free-energy of about -113.05 Kcal/mol. Thus, these molecules can be further tested by in vitro and in vivo studies on Mpro. This study lays a path to explore the new functionality of piperine derivatives as novel drug like molecules.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Inibidores de Proteases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...