Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 8(1): 46-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23263725

RESUMO

The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

2.
Nanotechnology ; 22(27): 275307, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21602615

RESUMO

A process is presented to fabricate solid-state nano-gears down to a 60 nm outer diameter with six teeth, where the 350 nm diameter ones already have 24 teeth. The small gears are free to move on a polycrystalline gold surface. The gears can be manipulated one by one, using an atomic force microscope (AFM) tip, to construct a train of gears where mechanical motion can be transmitted from one gear to another by mastering the surface friction. This is a first step on the way to bridge the fabrication gap between microfabricated and molecule gears.

3.
J Phys Condens Matter ; 23(12): 125303, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21389563

RESUMO

Electron transport calculations were carried out for three terminal OR logic gates constructed either with a single molecule or with a surface dangling bond circuit interconnected on a Si(100)H surface. The corresponding multi-electrode multi-channel scattering matrix (where the central three terminal junction OR gate is the scattering center) was calculated, taking into account the electronic structure of the supporting Si(100)H surface, the metallic interconnection nano-pads, the surface atomic wires and the molecule. Well interconnected, an optimized OR molecule can only run at a maximum of 10 nA output current intensity for a 0.5 V bias voltage. For the same voltage and with no molecule in the circuit, the output current of an OR surface atomic scale circuit can reach 4 µA.

4.
Phys Rev Lett ; 104(18): 185502, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482188

RESUMO

The mechanical response of ultrathin NaCl crystallites of nanometer dimensions upon manipulation with the tip of a scanning tunneling microscope (STM) is investigated, expanding STM manipulation to various nanostructuring modes of inorganic materials as cutting, moving, and cracking. In the light of theoretical calculations, our results reveal that atomic-scale NaCl islands can behave elastically and follow a classical Hooke's law. When the elastic limit of the nanocrystallites is reached, the STM tip induces atomic dislocations and consequently the regime of plastic deformation is entered. Our methodology is paving the way to understand the mechanical behavior and properties of other nanoscale materials.

5.
J Chem Phys ; 132(7): 074705, 2010 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-20170242

RESUMO

The adsorption of indigo molecules on Cu(111) was investigated by low temperature (5 K) scanning tunneling microscopy from the isolated single molecule regime to one monolayer. Structural optimization and image calculations demonstrate that the molecules are in a physisorbed state. Because of the reduced symmetry at the surface, single molecules acquire a chiral character upon adsorption leading to a two-dimensional (2D) chirality. They adopt two adsorption configurations, related by a mirror symmetry of the substrate, each with a distinct molecular orientation. Consequently, the 2D chirality is expressed by the orientation of the molecule. For higher coverage, molecules self-assemble by hydrogen bonding in nearly homochiral molecular chains, whose orientation is determined by the orientation taken by the isolated molecules. When the coverage approaches one monolayer, these chains pack into domains. Finally, the completion of the monolayer induces the expulsion of the molecules of the wrong chirality that are still in these domains, leading to perfect resolution in enantiopure domains.

6.
Nat Mater ; 8(7): 576-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525952

RESUMO

Gears are microfabricated down to diameters of a few micrometres. Natural macromolecular motors, of tens of nanometres in diameter, also show gear effects. At a smaller scale, the random rotation of a single-molecule rotor encaged in a molecular stator has been observed, demonstrating that a single molecule can be rotated with the tip of a scanning tunnelling microscope (STM). A self-assembled rack-and-pinion molecular machine where the STM tip apex is the rotation axis of the pinion was also tested. Here, we present the mechanics of an intentionally constructed molecule-gear on a Au(111) surface, mounting and centring one hexa-t-butyl-pyrimidopentaphenylbenzene molecule on one atom axis. The combination of molecular design, molecular manipulation and surface atomic structure selection leads to the construction of a fundamental component of a planar single-molecule mechanical machine. The rotation of our molecule-gear is step-by-step and totally under control, demonstrating nine stable stations in both directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...