Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(34): 82014-82030, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316626

RESUMO

Carbon disulfide (CS2) is one of the sulfur components that are naturally present in petroleum fractions. Its presence causes corrosion issues in the fuel facilities and deactivates the catalysts in the petrochemical processes. It is a hazardous component that negatively impacts the environment and public health due to its toxicity. This study used zinc-carbon (ZC) composite as a CS2 adsorbent from the gasoline fraction model component. The carbon is derived from date stone biomass. The ZC composite was prepared via a homogenous precipitation process by urea hydrolysis. The physicochemical properties of the prepared adsorbent are characterized using different techniques. The results confirm the loading of zinc oxide/hydroxide carbonate and urea-derived species on the carbon surface. The results were compared by the parent samples, raw carbon, and zinc hydroxide prepared by conventional and homogeneous precipitation. The CS2 adsorption process was performed using a batch system at atmospheric pressure. The effects of adsorbent dosage and adsorption temperatures have been examined. The results indicate that ZC has the highest CS2 adsorption capacity (124.3 mg.g-1 at 30 °C) compared to the parent adsorbents and the previously reported data. The kinetics and thermodynamic calculation results indicate the spontaneity and feasibility of the CS2 adsorption process.


Assuntos
Dissulfeto de Carbono , Gasolina , Substâncias Perigosas , Dissulfeto de Carbono/análise , Dissulfeto de Carbono/química , Dissulfeto de Carbono/toxicidade , Zinco/química , Carbono/química , Micro-Ondas , Adsorção , Substâncias Perigosas/análise , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade
2.
Semin Cancer Biol ; 69: 91-99, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31421265

RESUMO

The effectiveness of chemotherapy in hepatocellular carcinoma (HCC) is restricted by chemo-resistance and systemic side effects. To improve the efficacy and safety of chemotherapeutics in HCC management, scientists have attempted to deliver these drugs to malignant tissues using targeted carriers as nanoparticles (NPs). Among the three types of NPs targeting (active, passive, and stimuli-responsive), active targeting is the most commonly investigated in HCC treatment. Despite the observed promising results so far, clinical research on nanomedicine targeting for HCC treatment still faces many challenges.These include batch-to-batch physicochemical properties' variations, limiting large scale production and insufficient data on human and environmental toxicities. This review summarized the characteristics of different nanocarriers, ligands, targeted receptors on HCC cells and provided recommendations to overcome the challenges, facing this novel line of treatment for HCC.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Nanomedicina , Nanopartículas/administração & dosagem , Animais , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...