Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1146, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854713

RESUMO

While optical fibers display excellent performances in the infrared, visible and ultraviolet ranges remain poorly addressed by them. Obtaining better fibers for the short-wavelength range has been restricted, in all fiber optics, by scattering processes. In hollow-core fibers, the scattering loss arises from the core roughness and represents the limiting factor for loss reduction regardless of the cladding confinement power. Here, we report on the reduction of the core surface roughness of hollow-core fibers by modifying their fabrication technique. The effect of the modified process has been quantified and the results showed a root-mean-square surface roughness reduction from 0.40 to 0.15 nm. The improvement in the core surface entailed fibers with ultralow loss at short wavelengths. The results reveal this approach as a promising path for the development of hollow-core fibers with loss that can potentially be orders of magnitude lower than the ones achievable with silica-core counterparts.

2.
Opt Lett ; 46(3): 456-459, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528383

RESUMO

We report on the development of an acetylene-filled photonic microcell based on an assembly process that is contaminant free and requires no helium buffer gas nor gluing procedure. The microcell consists of a 7-m-long and 30 µm core-diameter inhibited-coupling guiding hollow-core photonic crystal fiber filled with acetylene gas at a pressure in the range of 80 µbar, sealed by capping its ends with fusion-collapsing a glass-tube sleeve, and mounted on FC connectors for integration. The microcell shows a robust single-mode behavior and a total insertion loss of ∼1.5dB. The spectroscopic merit of the formed microcell is tested by generating electromagnetic induced transparency and saturated absorption on R13 and P9 absorption lines, respectively. The sub-Doppler transparencies show a close to transit time limited linewidth of 17±3MHz. The latter was monitored for over 3 months. As a demonstration, the microcell was used to frequency stabilize a laser with fractional frequency instability improvement by a factor 50 at 100 s integration time compared to free running laser operation.

3.
Light Sci Appl ; 10(1): 7, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408320

RESUMO

Remarkable recent demonstrations of ultra-low-loss inhibited-coupling (IC) hollow-core photonic-crystal fibres (HCPCFs) established them as serious candidates for next-generation long-haul fibre optics systems. A hindrance to this prospect and also to short-haul applications such as micromachining, where stable and high-quality beam delivery is needed, is the difficulty in designing and fabricating an IC-guiding fibre that combines ultra-low loss, truly robust single-modeness, and polarisation-maintaining operation. The design solutions proposed to date require a trade-off between low loss and truly single-modeness. Here, we propose a novel IC-HCPCF for achieving low-loss and effective single-mode operation. The fibre is endowed with a hybrid cladding composed of a Kagome-tubular lattice (HKT). This new concept of a microstructured cladding allows us to significantly reduce the confinement loss and, at the same time, preserve truly robust single-mode operation. Experimental results show an HKT-IC-HCPCF with a minimum loss of 1.6 dB/km at 1050 nm and a higher-order mode extinction ratio as high as 47.0 dB for a 10 m long fibre. The robustness of the fibre single-modeness is tested by moving the fibre and varying the coupling conditions. The design proposed herein opens a new route for the development of HCPCFs that combine robust ultra-low-loss transmission and single-mode beam delivery and provides new insight into IC guidance.

4.
Sci Rep ; 9(1): 1376, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718764

RESUMO

Understanding cladding properties is crucial for designing microstructured optical fibers. This is particularly acute for Inhibited-Coupling guiding fibers because of the reliance of their core guidance on the core and cladding mode-field overlap integral. Consequently, careful planning of the fiber cladding parameters allows obtaining fibers with optimized characteristics such as low loss and broad transmission bandwidth. In this manuscript, we report on how one can tailor the modal properties of hollow-core photonic crystal fibers by adequately modifying the fiber cladding. We show that the alteration of the position of the tubular fibers cladding tubes can alter the loss hierarchy of the modes in these fibers, and exhibit salient polarization propriety. In this context, we present two fibers with different cladding structures which favor propagation of higher order core modes - namely LP11 and LP21 modes. Additionally, we provide discussions on mode transformations in these fibers and show that one can obtain uncommon intensity and polarization profiles at the fiber output. This allows the fiber to act as a mode intensity and polarization shaper. We envisage this novel concept can be useful for a variety of applications such as hollow core fiber based atom optics, atom-surface physics, sensing and nonlinear optics.

5.
Opt Lett ; 43(7): 1598-1601, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601039

RESUMO

We report on the development of hypocycloid core-contour inhibited-coupling (IC) Kagome hollow-core photonic crystal fibers (HC-PCFs) with record transmission loss and spectral coverage that include the common industrial laser wavelengths. Using the scaling of the confinement loss with the core-contour negative curvature and the silica strut thickness, we fabricated an IC Kagome HC-PCF for Yb and Nd:Yag laser guidance with record loss level of 8.5 dB/km associated with a 225-nm-wide 3-dB bandwidth. A second HC-PCF is fabricated with reduced silica strut thickness while keeping the hypocycloid core contour. It exhibits a fundamental transmission window spanning down to the Ti:Sa spectral range and a loss figure of 30 dB/km at 750 nm. The fibers' modal properties and bending sensitivity show these HC-PCFs to be ideal for ultralow-loss, flexible, and robust laser beam delivery.

6.
Opt Lett ; 41(10): 2286-9, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27176984

RESUMO

We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

7.
Opt Lett ; 38(24): 5327-30, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322249

RESUMO

We report experimental and theoretical studies of Raman-induced cross-phase modulational instabilities (XPMI) in a high-birefringence, normally dispersive optical fiber. Experimental results reveal that the Raman-Stokes wave, generated by a quasi-CW pump beam, interacts with the latter to create a novel type of XPMI sidebands. These sidebands are characterized by a narrow gain bandwidth. The sideband frequencies are well reproduced by a linear stability analysis as well as by full numerical solutions of the coupled generalized nonlinear Schrödinger equations.

8.
Opt Lett ; 36(21): 4239-41, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22048377

RESUMO

We report experimental observation of passive harmonic mode locking (HML) in which the basic pattern is a soliton crystal. Several crystal states were generated from an initial large bound state by increasing the pump power. The soliton crystals are identical and progressively span along the cavity to finally take a regular spacing leading to HML of solitons crystal.

9.
Opt Express ; 19(14): 13134-9, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747466

RESUMO

We report a novel spontaneous soliton pattern formation in a figure-of-eight passively mode-locked erbium-doped double-clad fiber laser. It consists in a condensate phase in which there is almost periodic arrangement of alternate crystal and liquid soliton phases. Thanks to an adapted ansatz for the electric field, we perform a reconstruction allowing to clearly identify the soliton distribution along the cavity.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Lasers , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
10.
Opt Lett ; 36(9): 1545-7, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21540922

RESUMO

We investigate multiple-soliton pattern formations in a figure-of-eight passively mode-locked fiber laser. Operation in the anomalous dispersion regime with a double-clad fiber amplifier allows generation of up to several hundreds of solitons per round trip. We report the observation of remarkable soliton distributions: soliton gas, soliton liquid, soliton polycrystal, and soliton crystal, thus indicating the universality of such complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA