Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Energy ; 235: 369-378, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31130767

RESUMO

Approximately three billion people cook with solid fuels, mostly wood, on open fires or rudimentary stoves. These traditional cooking methods produce particulate matter and carbon monoxide known to cause significant respiratory health problems, especially among women and children, who often have the highest exposure. In this work, an inexpensive potassium-based catalyst was incorporated in a chimneyless biomass cookstove to reduce harmful emissions through catalytic oxidation. Potassium titanate was identified as an effective and stable oxidation catalyst capable of oxidizing particulate matter and carbon monoxide. Using a cordierite monolith to incorporate potassium titanate within a bespoke, rocket-style, improved cookstove led to a 36% reduction in particulate matter emissions relative to a baseline stove with a blank monolith and a 26% reduction relative to a stove with no monolith. Additionally, the catalytic stove reduced particulate matter emissions by 82%, reduced carbon monoxide emissions by 70%, and improved efficiency by 100% compared to a carefully tended, three-stone fire. Potassium titanate was also shown to oxidize carbon monoxide at temperatures as low as 500 °C, or as low as 300 °C when doped with copper or cobalt.

2.
Sci Total Environ ; 529: 275-84, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26025638

RESUMO

As the demand for reliable and safe water supplies increases, both water quality and available quantity are being challenged by population growth and climate change. Greywater reuse is becoming a common practice worldwide; however, in remote locations of limited water supply, such as those encountered in military installations, it is desirable to expand its classification to include dishwashing water to maximize the conservation of fresh water. Given that no standards for dishwashing greywater reuse by the military are currently available, the current study determined a specific set of water quality standards for dishwater recycling systems for U.S. military field operations. A tentative water reuse standard for dishwashing water was developed based on federal and state regulations and guidelines for non-potable water, and the developed standard was cross-evaluated by monitoring water quality data from a full-scale dishwashing water recycling system using an innovative electrocoagulation and ultrafiltration process. Quantitative microbial risk assessment (QMRA) was also performed based on exposure scenarios derived from literature data. As a result, a specific set of dishwashing water reuse standards for field analysis (simple, but accurate) was finalized as follows: turbidity (<1 NTU), Escherichia coli (<50 cfu mL(-1)), and pH (6-9). UV254 was recommended as a surrogate for organic contaminants (e.g., BOD5), but requires further calibration steps for validation. The developed specific water standard is the first for dishwashing water reuse and will be expected to ensure that water quality is safe for field operations, but not so stringent that design complexity, cost, and operational and maintenance requirements will not be feasible for field use. In addition the parameters can be monitored using simple equipment in a field setting with only modest training requirements and real-time or rapid sample turn-around. This standard may prove useful in future development of civilian guidelines.


Assuntos
Utensílios de Alimentação e Culinária , Militares , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Qualidade da Água/normas , Reciclagem , Abastecimento de Água/estatística & dados numéricos
3.
Biosens Bioelectron ; 23(10): 1481-7, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18313912

RESUMO

Bioelectronic interfaces that establish electrical communication between redox enzymes and electrodes have potential applications as biosensors, biocatalytic reactors, and biological fuel cells. These interfaces are commonly formed on gold films deposited using physical vapor deposition (PVD) or chemical vapor deposition (CVD). PVD and CVD require deposition of a primer layer, such as titanium or chromium, and require the use of expensive equipment and cannot be used on a wide range of substrates. This paper describes a versatile new bench-top method to form bioelectronic interfaces containing a gold film, electron mediator, cofactor, and dehydrogenase enzyme (secondary alcohol dehydrogenase, and sorbitol dehydrogenase) on nonconductive substrates such as polystyrene and glass. The method combines layer-by-layer deposition of polyelectrolytes, electroless metal deposition, and directed molecular self-assembly. Cyclic voltammetry, chronoamperometry, field emission X-ray dispersive spectroscopy, scanning electron microscopy, and atomic force microscopy were used to characterize the bioelectronic interfaces. Interfaces formed on flexible polystyrene slides were shown to retain their activity after bending to a radius of curvature of 18mm, confirming that the approach can be applied on cheap and flexible substrates for applications where traditional wafer-scale electronics is not suitable, such as personal or structural health monitors and rolled microtube biosensors.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Microeletrodos , Técnicas Biossensoriais/métodos , Condutividade Elétrica , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...