Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 52(4): 1961-1970, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31981054

RESUMO

Heat shock protein (HSP) 90 gene provides protection and adaptation to thermal assault and certain polymorphisms have been associated to heat tolerance in humans and animals. Single nucleotide polymorphisms (SNPs) of HSP 90 gene were used to evaluate the scientific basis of heat tolerance in four zebu breeds of Nigeria. The DNA was extracted from skin tissue of 90 adult bulls representing White Fulani (WF), Sokoto Gudali (SG), Red Bororo (RB), and Ambala (AM). The SNPs were determined in DNAs using PCR, sequencing, and visualization and bio-editing by chromatogram in SeqMan Ngen tool. Subsequently, respective genotypes were constructed and genotypic and allelic frequencies were computed. Also, body parameters related to heat stress (HS) including body temperature (BT), rectal temperature (RT), and respiratory rates (RR) were taken for each animal before biological sampling and heat tolerance coefficient (HTC) was calculated. We detected four SNPs distinct/specific for each breed as follows: change from thymine (T) to guanine (G) at position 116 (T116G) in RB, G to cytosine (C) at 220 (G220C) in SG, G to adenine (A) at two positions, 346 (G346A) and 390 (G390A) in AM and WF, respectively. Heterozygous SNPs showed significantly lower values (P < 0.0001) for BT, RT, RR, and HTC than homozygous genotypes at all positions. We hypothesize that animals with heterozygous SNPs in exon 3 of HSP 90 may be tolerant to HS. These SNPs can be used as bio-markers for screening large populations of cattle for tolerance to hot tropical conditions in Nigeria and other sub-humid places.


Assuntos
Bovinos/fisiologia , Proteínas de Choque Térmico HSP90/genética , Polimorfismo de Nucleotídeo Único , Termotolerância/genética , Animais , Bovinos/genética , Nigéria
2.
Biochem Genet ; 52(1-2): 1-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23877191

RESUMO

The tenascin-XB (TNXB) gene has antiadhesive effects, functions in matrix maturation in connective tissues, and localizes to the major histocompatibility complex class III region. We hypothesized that it may influence adaptive physiological response through an effect on blood vessel function. We identified a novel g.1324 A→G polymorphism at a TaqI recognition site in a 454 bp fragment of ovine TNXB and genotyped it in 150 Nigerian sheep using PCR-RFLP. The missense mutation changes glutamic acid (GAA) to glycine (GGA). Among SNP genotypes, significant differences (P < 0.05) were observed in body weight and fore cannon bone length. Interaction effects of breed, SNP genotype, and geographic location had a significant effect (P < 0.05) on chest girth. The SNP genotype was significantly (P < 0.05) associated with physiological traits of pulse rate and skin temperature. The observed effect of this novel polymorphism may be mediated through its role in connective tissue biology, requiring further association and functional studies.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Complexo Principal de Histocompatibilidade , Polimorfismo de Nucleotídeo Único , Carneiro Doméstico/genética , Tenascina/genética , Animais , Temperatura Corporal , Peso Corporal/genética , Osso e Ossos/anatomia & histologia , Genótipo , Nigéria , Pulso Arterial , Carneiro Doméstico/anatomia & histologia , Carneiro Doméstico/fisiologia , Fenômenos Fisiológicos da Pele
3.
Biochem Genet ; 51(11-12): 954-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23835918

RESUMO

The DQB1 locus is located in the major histocompatibility complex (MHC) class II region and involved in immune response. We identified 20 polymorphic sites in a 228 bp fragment of exon 2, one of the most critical regions of the MHC DQB1 gene, in 60 Nigerian goats. Four sites are located in the peptide binding region, and 10 amino acid substitutions are peculiar to Nigerian goats, compared with published sequences. A significantly higher ratio of nonsynonymous/synonymous substitutions (dN/dS) suggests that allelic sequence evolution is driven by balancing selection (P < 0.01). In silico functional analysis using PANTHER predicted that substitution P56R, with a subPSEC score of -4.00629 (Pdeleterious = 0.73229), is harmful to protein function. The phylogenetic tree from consensus sequences placed the two northern breeds closer to each other than either was to the southern goats. This first report of sequence diversity at the DQB1 locus for any African goat breed may be useful in the search for disease-resistant genotypes.


Assuntos
Éxons , Genes MHC da Classe II , Variação Genética , Cabras/genética , Complexo Principal de Histocompatibilidade/genética , Animais , Cabras/imunologia , Antígenos de Histocompatibilidade Classe II/química , Complexo Principal de Histocompatibilidade/imunologia , Dados de Sequência Molecular , Nigéria , Filogenia , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de Proteína
4.
J Anim Sci Biotechnol ; 3(1): 38, 2012 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-23176051

RESUMO

BACKGROUND: Sheep is important in the socio-economic lives of people around the world. It is estimated that more than half of our once common livestock breeds are now endangered. Since genetic characterization of Nigerian sheep is still lacking, we analyzed ten morphological traits on 402 animals and 15 microsatellite DNA markers in 384 animals of the 4 Nigerian sheep breeds to better understand genetic diversity for breeding management and germplasm conservation. RESULTS: Morphological traits of Uda and Balami were significantly (P < 0.05) higher than Yankasa, which were both higher than West African Dwarf (WAD) sheep. Stepwise discriminant analysis showed tail length, rump height, chest girth, ear length and chest depth as the most discriminating variables for classification. Mahalanobis distances show the least differentiation between Uda and Balami and the largest between WAD and Balami sheep. While 93.3% of WAD sheep were correctly assigned to their source genetic group, 63.9% of Yankasa, 61.2% of Balami and 45.2% of Uda were classified correctly by nearest neighbour discriminant analysis. The overall high Polymorphism Information Content (PIC) of all microsatellite markers ranged from 0.751 to 0.927 supporting their use in genetic characterization. Expected heterozygosity was high for all loci (0.783 to 0.93). Mean heterozygote deficiency across all populations (0.171 to 0.534) possibly indicate significant inbreeding (P < 0.05). Mean values for FST, FIT and FIS statistics across all loci were 0.088, 0.394 and 0.336 respectively. Yankasa and Balami are the most closely related breeds (DA = 0.184) while WAD and Balami are the farthest apart breeds (DA = 0.665), which is coincident with distance based on morphological analysis and population structure assessed by STRUCTURE. CONCLUSIONS: These results suggest that within-breed genetic variation in Nigerian sheep is higher than between-breeds and may be a valuable tool for genetic improvement and conservation. The higher genetic variability in Yankasa suggests the presence of unique ancestral alleles reflecting the presence of certain functional genes which may result in better adaptability in more agro-ecological zones of Nigeria. These genetic characteristics are potentially useful in planning improvement and conservation strategies in Nigerian indigenous sheep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...