Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19567, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599250

RESUMO

Mosquitoes are a great menace for humankind since they transmit pathogenic organisms causing Malaria, Dengue, Chikungunya, Elephantiasis and Japanese encephalitis. There is an urgent need to discover new and novel biological tools to mitigate mosquito-borne diseases. To develop bioinsecticides through newly developed nanotechnology is another option in the present research scenario. In this study we synthesize and characterize sardine fish scales with silver nitrate by adopting various instrumental techniques such as UV- and FTIR-spectroscopy, energy-dispersive X-ray (EDAX), X-ray diffraction analyses (XRD) and scanning electron microscopy (SEM). Toxicity bioassays were conducted with young developmental stages of mosquito vectors. Significant mortality appeared after different life stages of mosquito vectors (young larval and pupal instars were exposed to the nanomaterials). LC50 values were 13.261 ppm for young first instar larvae and 32.182 ppm for pupae. Feeding and predatory potential of G. affinis, before and after exposure to nanoparticles against mosquito larval (I & II) instars of the mosquitoes showed promising results in laboratory experiments. Feeding potential of mosquito fish without nanoparticle treatment was 79.7% and 70.55% for the first and second instar larval populations respectively. At the nanoparticle-exposed situation the predatory efficiency of mosquitofish was 94.15% and 84.3%, respectively. Antioxidant enzymes like (SOD), (CAT), and (LPO) were estimated in the gill region of sardine fish in control and experimental waters. A significant reduction of egg hatchability was evident after nanoparticle application. It became evident from this study that the nano-fabricated materials provide suitable tools to control the malaria vector Anopheles stephensi in the aquatic phase of its life cycle. This finding suggests an effective novel approach to mosquito control.


Assuntos
Escamas de Animais/química , Anopheles/efeitos dos fármacos , Peixes , Inseticidas/química , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Prata , Animais , Anopheles/parasitologia , Fenômenos Químicos , Concentração Inibidora 50 , Insetos Vetores/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Testes de Sensibilidade Parasitária , Prata/química , Análise Espectral
2.
Sci Rep ; 11(1): 8837, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893349

RESUMO

Microbes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV-vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Lawsonia (Planta)/química , Nanopartículas Metálicas/química , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Anti-Infecciosos/efeitos adversos , Antineoplásicos/efeitos adversos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Larva/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Análise Espectral/métodos , Difração de Raios X
3.
Environ Sci Pollut Res Int ; 25(11): 10504-10514, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28988379

RESUMO

The control of filariasis vectors has been enhanced in several areas, but there are main challenges, including increasing resistance to insecticides and lack of cheap and eco-friendly products. The toxicity of iron (Fe0) and iron oxide (Fe2O3) nanoparticles has been scarcely investigated yet. We studied the larvicidal and pupicidal activity of Fe0 and Fe2O3 nanoparticles against Culex quinquefasciatus. Fe0 and Fe2O3 nanoparticles produced by green (using a Ficus natalensis aqueous extract) and chemical nanosynthesis, respectively, were analyzed by UV-Vis spectrophotometry, FT-IR spectroscopy, XRD analysis, SEM, and EDX assays. In larvicidal and pupicidal experiments on Cx. quinquefasciatus, LC50 of Fe0 nanoparticles ranged from 20.9 (I instar larvae) to 43.7 ppm (pupae) and from 4.5 (I) to 22.1 ppm (pupae) for Fe2O3 nanoparticles synthesized chemically. Furthermore, the predation efficiency of the guppy fish, Poecilia reticulata, after a single treatment with sub-lethal doses of Fe0 and Fe2O3 nanoparticles was magnified. Overall, this work provides new insights about the toxicity of Fe0 and Fe2O3 nanoparticles against mosquito vectors; we suggested that green and chemical fabricated nano-iron may be considered to develop novel and effective pesticides.


Assuntos
Inseticidas/análise , Larva/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas/química , Comportamento Predatório/efeitos dos fármacos , Pupa/efeitos dos fármacos , Animais , Culex/efeitos dos fármacos , Compostos Férricos/análise , Ficus , Peixes , Ferro/análise , Mosquitos Vetores , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Parasitol Res ; 116(2): 495-502, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27815736

RESUMO

A main challenge in parasitology is the development of reliable tools to prevent or treat mosquito-borne diseases. We investigated the toxicity of magnetic nanoparticles (MNP) produced by Magnetospirillum gryphiswaldense (strain MSR-1) on chloroquine-resistant (CQ-r) and sensitive (CQ-s) Plasmodium falciparum, dengue virus (DEN-2), and two of their main vectors, Anopheles stephensi and Aedes aegypti, respectively. MNP were studied by Fourier-transform infrared spectroscopy and transmission electron microscopy. They were toxic to larvae and pupae of An. stephensi, LC50 ranged from 2.563 ppm (1st instar larva) to 6.430 ppm (pupa), and Ae. aegypti, LC50 ranged from 3.231 ppm (1st instar larva) to 7.545 ppm (pupa). MNP IC50 on P. falciparum were 83.32 µg ml-1 (CQ-s) and 87.47 µg ml-1 (CQ-r). However, the in vivo efficacy of MNP on Plasmodium berghei was low if compared to CQ-based treatments. Moderate cytotoxicity was detected on Vero cells post-treatment with MNP doses lower than 4 µg ml-1. MNP evaluated at 2-8 µg ml-1 inhibited DEN-2 replication inhibiting the expression of the envelope (E) protein. In conclusion, our findings represent the first report about the use of MNP in medical and veterinary entomology, proposing them as suitable materials to develop reliable tools to combat mosquito-borne diseases.


Assuntos
Cloroquina/farmacologia , Vírus da Dengue/efeitos dos fármacos , Inseticidas/farmacologia , Nanopartículas de Magnetita/toxicidade , Mosquitos Vetores/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Aedes/efeitos dos fármacos , Aedes/fisiologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Chlorocebus aethiops , Vírus da Dengue/fisiologia , Resistência a Medicamentos , Mosquitos Vetores/fisiologia , Plasmodium falciparum/fisiologia , Células Vero
5.
Ecotoxicol Environ Saf ; 132: 318-28, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27344400

RESUMO

Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments.


Assuntos
Anopheles , Quitosana/síntese química , Inseticidas/síntese química , Nanopartículas Metálicas/química , Prata/química , Animais , Braquiúros , Humanos , Larva/efeitos dos fármacos , Malária/prevenção & controle , Controle de Mosquitos , Pupa/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...