Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253596

RESUMO

Clinical data networks that leverage large volumes of data in electronic health records (EHRs) are significant resources for research on coronavirus disease 2019 (COVID-19). Data harmonization is a key challenge in seamless use of multisite EHRs for COVID-19 research. We developed a COVID-19 application ontology in the national Accrual to Clinical Trials (ACT) network that enables harmonization of data elements that that are critical to COVID-19 research. The ontology contains over 50,000 concepts in the domains of diagnosis, procedures, medications, and laboratory tests. In particular, it has computational phenotypes to characterize the course of illness and outcomes, derived terms, and harmonized value sets for SARS-CoV-2 laboratory tests. The ontology was deployed and validated on the ACT COVID-19 network that consists of nine academic health centers with data on 14.5M patients. This ontology, which is freely available to the entire research community on GitHub at https://github.com/shyamvis/ACT-COVID-Ontology, will be useful for harmonizing EHRs for COVID-19 research beyond the ACT network.

2.
PLoS One ; 11(1): e0146256, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26799320

RESUMO

We report herein the development, functional and molecular characterization of an isogenic, paired bladder cancer cell culture model system for studying platinum drug resistance. The 5637 human bladder cancer cell line was cultured over ten months with stepwise increases in oxaliplatin concentration to generate a drug resistant 5637R sub cell line. The MTT assay was used to measure the cytotoxicity of several bladder cancer drugs. Liquid scintillation counting allowed quantification of cellular drug uptake and efflux of radiolabeled oxaliplatin and carboplatin. The impact of intracellular drug inactivation was assessed by chemical modulation of glutathione levels. Oxaliplatin- and carboplatin-DNA adduct formation and repair was measured using accelerator mass spectrometry. Resistance factors including apoptosis, growth factor signaling and others were assessed with RNAseq of both cell lines and included confirmation of selected transcripts by RT-PCR. Oxaliplatin, carboplatin, cisplatin and gemcitabine were significantly less cytotoxic to 5637R cells compared to the 5637 cells. In contrast, doxorubicin, methotrexate and vinblastine had no cell line dependent difference in cytotoxicity. Upon exposure to therapeutically relevant doses of oxaliplatin, 5637R cells had lower drug-DNA adduct levels than 5637 cells. This difference was partially accounted for by pre-DNA damage mechanisms such as drug uptake and intracellular inactivation by glutathione, as well as faster oxaliplatin-DNA adduct repair. In contrast, both cell lines had no significant differences in carboplatin cell uptake, efflux and drug-DNA adduct formation and repair, suggesting distinct resistance mechanisms for these two closely related drugs. The functional studies were augmented by RNAseq analysis, which demonstrated a significant change in expression of 83 transcripts, including 50 known genes and 22 novel transcripts. Most of the transcripts were not previously associated with bladder cancer chemoresistance. This model system and the associated phenotypic and genotypic data has the potential to identify some novel details of resistance mechanisms of clinical importance to bladder cancer.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Resistencia a Medicamentos Antineoplásicos/genética , Compostos Organoplatínicos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose/genética , Transporte Biológico/genética , Carboplatina/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacocinética , Cisplatino/farmacologia , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Doxorrubicina/farmacologia , Perfilação da Expressão Gênica , Glutationa/metabolismo , Humanos , Espectrometria de Massas , Metotrexato/farmacologia , Compostos Organoplatínicos/metabolismo , Compostos Organoplatínicos/farmacocinética , Oxaliplatina , Neoplasias da Bexiga Urinária/genética , Vimblastina/farmacologia , Gencitabina
3.
Phytopathology ; 100(4): 345-55, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20205538

RESUMO

Sooty blotch and flyspeck (SBFS) fungi on apple fruit were sampled from nine orchards in four midwestern U.S. states during 2000 and 30 orchards in 10 eastern U.S. states during 2005 in order to estimate taxonomic diversity and discern patterns of geographic distribution. Forty apple fruit per orchard were arbitrarily sampled and colonies of each mycelial phenotype were counted on each apple. Representative colonies were isolated, cultures were purified, and DNA was extracted. For representative isolates, the internal transcribed spacer (ITS) and large subunit (LSU) regions of ribosomal DNA were amplified and sequenced. In total, 60 SBFS putative species were identified based on ITS sequences and morphological characteristics; 30 of these were discovered in the 2005 survey. Modified Koch's postulates were fulfilled for all 60 species in an Iowa orchard; colonies resulting from inoculation of apple fruit were matched to the original isolates on the basis of mycelial type and ITS sequence. Parsimony analysis for LSU sequences from both surveys revealed that 58 putative SBFS species were members of the Dothideomycetes, 52 were members of the Capnodiales, and 36 were members of the Mycosphaerellaceae. The number of SBFS species per orchard varied from 2 to 15. Number of SBFS species and values of the Margalef and Shannon indexes were significantly (P < 0.05) lower in 21 orchards that had received conventional fungicide sprays during the fruit maturation period than in 14 unsprayed orchards. Several SBFS species, including Schizothyrium pomi, Peltaster fructicola, and Pseudocercosporella sp. RH1, were nearly ubiquitous, whereas other species, such as Stomiopeltis sp. RS5.2, Phialophora sessilis, and Geastrumia polystigmatis, were found only within restricted geographic regions. The results document that the SBFS complex is far more taxonomically diverse than previously recognized and provide strong evidence that SBFS species differ in geographic distribution. To achieve more efficient management of SBFS, it may be necessary to understand the environmental biology of key SBFS species in each geographic region.


Assuntos
Fungos/genética , Malus/microbiologia , Doenças das Plantas/microbiologia , Frutas/microbiologia , Filogenia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...