Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113885, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457337

RESUMO

Amyotrophic lateral sclerosis damages proteostasis, affecting spinal and upper motor neurons earlier than a subset of cranial motor neurons. To aid disease understanding, we exposed induced cranial and spinal motor neurons (iCrMNs and iSpMNs) to proteotoxic stress, under which iCrMNs showed superior survival, quantifying the transcriptome and proteome for >8,200 genes at 0, 12, and 36 h. Two-thirds of the proteome showed cell-type differences. iSpMN-enriched proteins related to DNA/RNA metabolism, and iCrMN-enriched proteins acted in the endoplasmic reticulum (ER)/ER chaperone complex, tRNA aminoacylation, mitochondria, and the plasma/synaptic membrane, suggesting that iCrMNs expressed higher levels of proteins supporting proteostasis and neuronal function. When investigating the increased proteasome levels in iCrMNs, we showed that the activity of the 26S proteasome, but not of the 20S proteasome, was higher in iCrMNs than in iSpMNs, even after a stress-induced decrease. We identified Ublcp1 as an iCrMN-specific regulator of the nuclear 26S activity.


Assuntos
Esclerose Lateral Amiotrófica , Proteostase , Humanos , Proteostase/fisiologia , Proteoma/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático
2.
Elife ; 82019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31157617

RESUMO

In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Glicoproteínas de Membrana/genética , Neurônios Motores/metabolismo , Neurônios Eferentes/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/terapia , Animais , Diferenciação Celular/genética , Nervos Cranianos , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Neurônios Eferentes/efeitos dos fármacos , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/patologia
3.
Science ; 347(6225): 1017-21, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25722416

RESUMO

Polycomb and Trithorax group proteins encode the epigenetic memory of cellular positional identity by establishing inheritable domains of repressive and active chromatin within the Hox clusters. Here we demonstrate that the CCCTC-binding factor (CTCF) functions to insulate these adjacent yet antagonistic chromatin domains during embryonic stem cell differentiation into cervical motor neurons. Deletion of CTCF binding sites within the Hox clusters results in the expansion of active chromatin into the repressive domain. CTCF functions as an insulator by organizing Hox clusters into spatially disjoint domains. Ablation of CTCF binding disrupts topological boundaries such that caudal Hox genes leave the repressed domain and become subject to transcriptional activation. Hence, CTCF is required to insulate facultative heterochromatin from impinging euchromatin to produce discrete positional identities.


Assuntos
Diferenciação Celular/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Genes Homeobox , Neurônios Motores/citologia , Proteínas Repressoras/metabolismo , Animais , Fator de Ligação a CCCTC , Cromatina/química , Cromatina/genética , Cães , Humanos , Camundongos , Família Multigênica , Pescoço , Estrutura Terciária de Proteína , Ratos , Proteínas Repressoras/química , Proteínas Repressoras/genética
4.
Nat Neurosci ; 16(9): 1219-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872598

RESUMO

Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation-sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type-specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types.


Assuntos
Diferenciação Celular/fisiologia , Neurônios Motores/fisiologia , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Células-Tronco Embrionárias , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Antígeno Ki-67/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Estrutura Terciária de Proteína , Medula Espinal/citologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...