Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 365: 36-45, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640768

RESUMO

Endoplasmic reticulum autophagy (ER-phagy) is an important strategy for cells against ER stress and maintain ER homeostasis. ER stress is considered as a potential toxicity of nanoparticles, but only a few studies have explored whether the nanoparticles-induced ER stress can trigger ER-phagy, and the precise molecular mechanism of ER-phagy mediated by nanoparticle-induced ER stress is still poorly understood. Therefore, our study focuses on the relationship between ER stress and ER-phagy caused by emerging nanoparticles CdTe-QDs and its molecular mechanism. The results showed that the accumulation of ROS and ER stress induced by CdTe-QDs contributed to the activation of autophagy and ER-phagy. Importantly, our study unraveled that CdTe-QDs activate autophagy by up-regulating the transcription of core autophagy machinery. It was found that the induced ER-phagy was mediated by Atg11/Atg40/Lst1-Sec23 instead of the autophagy machinery genes. We speculated that the ER-phagy caused by CdTe-QDs may include micro-ER-phagy and macro-ER-phagy. Collectively, this work provided valuable information for the application of CdTe-QDs in the field of biology and a theoretical basis for further understanding of ER-phagy.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Autofagia , Compostos de Cádmio/toxicidade , Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Saccharomyces cerevisiae/genética , Telúrio/toxicidade
2.
Talanta ; 217: 121056, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32498903

RESUMO

DNA-modified gold nanoparticles (AuNPs) are useful nanomaterials for detecting multiple molecules. However, their performance is greatly dependent on the density of probe DNA on the surface of AuNPs. Here, we used Poly-adenine (PolyA) to regulate the surface density of probe DNA to achieve a highly efficient DNA walking biosensor system to detection miRNA-21. The movement track of the biosensor system consists of PolyA-DNA probe was connected to AuNPs, and exonuclease III (Exo III) acted as a motor driving the walker movement to achieve signal amplification. By optimizing the length of PolyA, the surface density of probe DNA was changed, thereby affecting the target binding and enzymatic processing of the bound probes, which ultimately enhanced the sensitivity and reduced timeliness of the DNA walker. Furthermore, the designed PolyA-DNA probe exhibits an outstanding sensitivity, due to the effect of density regulation, which is 7.9 times and 11.1 times lower than those of the SH-DNA and the free-DNA, respectively. In addition, the hairpin structure of DNA probe locates fluorophore at a zone adjacent to AuNPs surface, which reduces the background signal by 1.1 times compared with traditional straight probe. In this work, the biosensor system shows a high selectivity towards miRNA-21. Moreover, the biosensor system has been demonstrated to be potentially useful for the miRNA-21 detection in human serum with the recoveries of 93.2%-110.0% and has high repeatability. Considering these advantages, this PolyA-regulated DNA walking biosensor system has great potential as a routine tool for miRNA detection and has wide applications in the field of biomedical analysis.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , MicroRNAs/sangue , Poli A/química , Humanos
3.
Anal Chem ; 92(12): 8090-8096, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32431153

RESUMO

Current rapid bacterial detection methods are dedicated to the classification and identification of bacteria. However, there is still a lack of a method for specific quantitative analysis of certain bacteria. In this work, a method based on elemental-tags laser-induced breakdown spectroscopy (ETLIBS) was developed for the rapid and specific quantitative analysis of Salmonella typhimurium (S. ty). Elemental tags were first synthesized by assembling copper nanoparticles (CuNPs) with poly(thymine) (poly-T) template that linked with the aptamer sequence. Under the specific recognition of the aptamer, S. ty can be fully combined with the elemental tags within 30 min to achieve labeling. Afterward, the silicon nanowires (SiNWs) array modified with Au@Ag nanoparticles (SiNWs-Au@Ag) was employed to capture S. ty in 30 min. Attributed to the rapid analysis superiority of ETLIBS mapping, 100 spectra of SiNWs-Au@Ag/S. ty/CuNPs can be obtained in 5 min. It was found that the peak area of the Cu(I) atomic emission line at 324.75 nm fitted by the Voigt profile was linearly related to the bacterial concentration in the range of 102-106 CFU/mL(R2 = 0.978). Furthermore, ETLIBS mapping achieved a low limit of detection (LOD) of 61 CFU/mL and showed good selectivity to S. ty compared with other bacteria. Besides, the method exhibited preeminent detection performance in spiked samples with the recoveries of 87-113%. With the advantages of rapidity, high efficiency, and specificity, the proposed method is expected to be a powerful tool for bacterial detection.


Assuntos
Lasers , Salmonella typhimurium/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Cobre/química , Ouro/química , Nanopartículas/química , Tamanho da Partícula , Silício/química , Prata/química , Análise Espectral , Propriedades de Superfície
4.
Anal Chem ; 90(22): 13640-13646, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30359519

RESUMO

A novel, Ω-shaped fiber-optic localized surface plasmon resonance (FOLSPR) biosensor was designed for sensitive real-time and label-free bacterial detection. The designed Ω-shaped fiber-optic probe exhibits an outstanding sensitivity, due to the effect of unique geometry on performance. The results show that refractive index (RI) sensitivity of the Ω-shaped fiber-optic probe is 14 times and 2.5 times higher than those of the straight-shaped and the U-shaped FOLSPR, respectively. In addition, the reason for the geometry and the bending radius effects on RI sensitivity was discussed by investigating the relationship between RI sensitivity and the bending area. The results show that RI sensitivity was enhanced with the increase of bending area, and the best RI sensitivity obtained by Ω-shaped FOLSPR was 64.582 (a.u.)/RIU. Combined with this newly designed Ω-shaped FOLSPR biosensor, a real-time, label-free, sensitive, and highly selective bacterial detection method was established. In this work, the aptamers immobilized on the surface of FOLSPR could specifically capture Salmonella Typhimurium, resulting in an intense change of the absorption peak. In line with this principle, the FOLSPR biosensor achieved high detection sensitivity for Salmonella Typhimurium down to 128 CFU/mL within a linear range from 5 × 102 to 1 × 108 CFU/mL and showed good selectivity for Salmonella Typhimurium detection compared to other bacteria. Furthermore, the FOLSPR biosensor was successfully applied to the detection of Salmonella Typhimurium in a chicken sample with the recoveries of 85-123%. With these characteristics, the novel biosensor is a potential alternative tool in food analysis and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Tecnologia de Fibra Óptica/métodos , Salmonella typhimurium/isolamento & purificação , Ressonância de Plasmônio de Superfície/métodos , Animais , Galinhas/microbiologia , Contagem de Colônia Microbiana , Limite de Detecção
5.
Oncotarget ; 6(31): 32013-26, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26397137

RESUMO

BACKGROUND: Accumulating evidence links colorectal cancer (CRC) with the intestinal microbiota. However, the disturbance of intestinal microbiota and the role of Fusobacterium nucleatum during the colorectal adenoma-carcinoma sequence have not yet been evaluated. METHODS: 454 FLX pyrosequencing was used to evaluate the disturbance of intestinal microbiota during the adenoma-carcinoma sequence pathway of CRC. Intestinal microbiota and mucosa tumor-immune cytokines were detected in mice after introducing 1,2-dimethylhydrazine (DMH), F. nucleatum or Berberine (BBR), using pyrosequencing and Bio-Plex Pro™ cytokine assays, respectively. Protein expressions were detected by western blotting. RESULTS: The levels of opportunistic pathogens, such as Fusobacterium, Streptococcus and Enterococcus spp. gradually increased during the colorectal adenoma-carcinoma sequence in human fecal and mucosal samples. F. nucleatum treatment significantly altered lumen microbial structures, with increased Tenericutes and Verrucomicrobia (opportunistic pathogens) (P < 0.05 = in wild-type C57BL/6 and mice with DMH treatment). BBR intervention reversed the F. nucleatum-mediated increase in opportunistic pathogens, and the secretion of IL-21/22/31, CD40L and the expression of p-STAT3, p-STAT5 and p-ERK1/2 in mice, compared with mice fed with F. nucleatum alone. CONCLUSIONS: F. nucleatum colonization in the intestine may prompt colorectal tumorigenesis. BBR could rescue F. nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment and blocking the activation of tumorigenesis-related pathways.


Assuntos
Adenoma/prevenção & controle , Berberina/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Colorretais/prevenção & controle , Infecções por Fusobacterium/complicações , Fusobacterium nucleatum/patogenicidade , Microambiente Tumoral/efeitos dos fármacos , Adenoma/etiologia , Adenoma/patologia , Animais , Western Blotting , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Citocinas/genética , Citocinas/metabolismo , Fezes/microbiologia , Infecções por Fusobacterium/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...